Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two distinct integers are chosen at random and without replacement from the first six positive integers. Compute the expected value of the absolute value of the difference of these two numbers.

Short Answer

Expert verified
The expected difference value is approximately 2.333.

Step by step solution

01

Define the Possible Outcomes

The possible outcomes are the absolute value of the difference between two distinct numbers chosen from 1 to 6. The possible outcomes are: \(1, 2, 3, 4, 5\).
02

Assign the Probabilities

Next, the probabilities of each outcome are calculated. The probabilities for the outcomes are: \[ P(1)= \frac{5}{15}, P(2)= \frac{4}{15}, P(3)= \frac{3}{15}, P(4)= \frac{2}{15}, P(5)= \frac{1}{15} \]. The denominators represent the number of ways to pick two numbers out of six, and the numerators represent the number of pairs with a specific difference.
03

Compute the Expected Value

The formula for the expected value is: \[ E(X) = \sum{[x \cdot P(x)]} \]. Using the values from step 2: \[ E(X) = 1 \cdot P(1) + 2 \cdot P(2) + 3 \cdot P(3) + 4 \cdot P(4) + 5 \cdot P(5) \]. After calculating, the expected value is found to be approximately 2.333.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(f(x)=1 / x^{2}, 1

A coin is to be tossed as many times as necessary to turn up one head. Thus the elements \(c\) of the sample space \(\mathcal{C}\) are \(H, T H, T T H\), TTTH, and so forth. Let the probability set function \(P\) assign to these elements the respective probabilities \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}\), and so forth. Show that \(P(\mathcal{C})=1 .\) Let \(C_{1}=\\{c:\) c is \(H, T H, T T H\), TTTH, or TTTTH \(\\}\). Compute \(P\left(C_{1}\right)\). Next, suppose that \(C_{2}=\) \(\\{c: c\) is TTTTH or TTTTTH \(\\}\). Compute \(P\left(C_{2}\right), P\left(C_{1} \cap C_{2}\right)\), and \(P\left(C_{1} \cup C_{2}\right)\).

A chemist wishes to detect an impurity in a certain compound that she is making. There is a test that detects an impurity with probability \(0.90\); however, this test indicates that an impurity is there when it is not about \(5 \%\) of the time. The chemist produces compounds with the impurity about \(20 \%\) of the time. A compound is selected at random from the chemist's output. The test indicates that an impurity is present. What is the conditional probability that the compound actually has the impurity?

Find the cdf \(F(x)\) associated with each of the following probability density functions. Sketch the graphs of \(f(x)\) and \(F(x)\). (a) \(f(x)=3(1-x)^{2}, 0

The following game is played. The player randomly draws from the set of integers \(\\{1,2, \ldots, 20\\} .\) Let \(x\) denote the number drawn. Next the player draws at random from the set \(\\{x, \ldots, 25\\}\). If on this second draw, he draws a number greater than 21 he wins; otherwise, he loses. (a) Determine the sum that gives the probability that the player wins. (b) Write and run a line of \(\mathrm{R}\) code that computes the probability that the player wins. (c) Write an \(\mathrm{R}\) function that simulates the game and returns whether or not the player wins. (d) Do 10,000 simulations of your program in Part (c). Obtain the estimate and confidence interval, (1.4.7), for the probability that the player wins. Does your interval trap the true probability?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free