Chapter 1: Problem 10
In an office there are two boxes of thumb drives: Box \(A_{1}\) contains seven 100 GB drives and three 500 GB drives, and box \(A_{2}\) contains two 100 GB drives and eight 500 GB drives. A person is handed a box at random with prior probabilities \(P\left(A_{1}\right)=\frac{2}{3}\) and \(P\left(A_{2}\right)=\frac{1}{3}\), possibly due to the boxes' respective locations. A drive is then selected at random and the event \(B\) occurs if it is a \(500 \mathrm{~GB}\) drive. Using an equally likely assumption for each drive in the selected box, compute \(P\left(A_{1} \mid B\right)\) and \(P\left(A_{2} \mid B\right)\)