Chapter 9: Problem 4
Show that the square of a noncentral \(T\) random variable is a noncentral \(F\) random variable.
Chapter 9: Problem 4
Show that the square of a noncentral \(T\) random variable is a noncentral \(F\) random variable.
All the tools & learning materials you need for study success - in one app.
Get started for freeStudent's scores on the mathematics portion of the ACT examination, \(x\), and on the final examination in the first-semester calculus ( 200 points possible), \(y\), are given. (a) Calculate the least squares regression line for these data. (b) Plot the points and the least squares regression line on the same graph. (c) Find point estimates for \(\alpha, \beta\), and \(\sigma^{2}\). (d) Find 95 percent confidence intervals for \(\alpha\) and \(\beta\) under the usual assumptions. $$ \begin{array}{cc|cc} \hline \mathrm{x} & \mathrm{y} & \mathrm{x} & \mathrm{y} \\ \hline 25 & 138 & 20 & 100 \\ 20 & 84 & 25 & 143 \\ 26 & 104 & 26 & 141 \\ 26 & 112 & 28 & 161 \\ 28 & 88 & 25 & 124 \\ 28 & 132 & 31 & 118 \\ 29 & 90 & 30 & 168 \\ 32 & 183 & & \\ \hline \end{array} $$
Fit by the method of least squares the plane \(z=a+b x+c y\) to the five points \((x, y, z):(-1,-2,5),(0,-2,4),(0,0,4),(1,0,2),(2,1,0)\).
Let the independent random variables \(Y_{1}, \ldots, Y_{n}\) have the joint pdf. $$ L\left(\alpha, \beta, \sigma^{2}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\\{-\frac{1}{2 \sigma^{2}} \sum_{1}^{n}\left[y_{i}-\alpha-\beta\left(x_{i}-\bar{x}\right)\right]^{2}\right\\} $$ where the given numbers \(x_{1}, x_{2}, \ldots, x_{n}\) are not all equal. Let \(H_{0}: \beta=0(\alpha\) and \(\sigma^{2}\) unspecified). It is desired to use a likelihood ratio test to test \(H_{0}\) against all possible alternatives. Find \(\Lambda\) and see whether the test can be based on a familiar statistic. Hint: In the notation of this section show that $$ \sum_{1}^{n}\left(Y_{i}-\hat{\alpha}\right)^{2}=Q_{3}+\widehat{\beta}^{2} \sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2} $$
Show that \(\sum_{j=1}^{b} \sum_{i=1}^{a}\left(X_{i j}-\bar{X}_{i .}\right)^{2}=\sum_{j=1}^{b} \sum_{i=1}^{a}\left(X_{i j}-\bar{X}_{i}-\bar{X}_{. j}+\bar{X}_{. .}\right)^{2}+a \sum_{j=1}^{b}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2} .\)
Let \(\boldsymbol{X}^{\prime}=\left[X_{1}, X_{2}, \ldots, X_{n}\right]\), where \(X_{1}, X_{2}, \ldots, X_{n}\) are observations of a random sample from a distribution which is \(N\left(0, \sigma^{2}\right) .\) Let \(b^{\prime}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]\) be a real nonzero vector, and let \(\boldsymbol{A}\) be a real symmetric matrix of order \(n\). Prove that the linear form \(\boldsymbol{b}^{\prime} \boldsymbol{X}\) and the quadratic form \(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\) are independent if and only if \(\boldsymbol{b}^{\prime} \boldsymbol{A}=\mathbf{0}\). Use this fact to prove that \(\boldsymbol{b}^{\prime} \boldsymbol{X}\) and \(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\) are independent if and only if the two quadratic forms, \(\left(\boldsymbol{b}^{\prime} \boldsymbol{X}\right)^{2}=\boldsymbol{X}^{\prime} \boldsymbol{b} \boldsymbol{b}^{\prime} \boldsymbol{X}\) and \(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\) are independent.
What do you think about this solution?
We value your feedback to improve our textbook solutions.