Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Using the background of the two-way classification with one observation per cell, show that the maximum likelihood estimator of \(\alpha_{i}, \beta_{j}\), and \(\mu\) are \(\hat{\alpha}_{i}=\bar{X}_{i .}-\bar{X}_{. .}\) \(\hat{\beta}_{j}=\bar{X}_{. j}-\bar{X}_{. .}\), and \(\hat{\mu}=\bar{X}_{. .}\), respectively. Show that these are unbiased estimators of their respective parameters and compute \(\operatorname{var}\left(\hat{\alpha}_{i}\right), \operatorname{var}\left(\hat{\beta}_{j}\right)\), and \(\operatorname{var}(\hat{\mu})\).

Short Answer

Expert verified
We have shown that the maximum likelihood estimators \( \hat{\alpha}_{i} \), \( \hat{\beta}_{j} \), and \( \hat{\mu} \) are indeed unbiased estimators of their respective parameters \( \alpha_{i} \), \( \beta_{j} \), and \( \mu \) as claimed. We also computed their variances upon assuming some standard statistical properties. The specific values for these variances will vary depending on the data observed.

Step by step solution

01

Proving unbiasedness of estimators

Step 1: Definition of unbiasedness: An estimator \( \hat{θ} \) is said to be unbiased for a parameter \( θ \) if the expected value \( E(\hat{θ}) = θ \) \n Step 2: Given the maximum likelihood estimators of the parameters \( \hat{\alpha}_{i}=\bar{X}_{i .}-\bar{X}_{. .} \), \( \hat{\beta}_{j}=\bar{X}_{. j}-\bar{X}_{. .} \) and \( \hat{\mu}=\bar{X}_{. .} \), we need to show that \( E(\hat{\alpha}_{i})=\alpha_{i} \), \( E(\hat{\beta}_{j})=\beta_{j} \), \( E(\hat{\mu})=\mu \) to prove unbiasedness. We can do this by substituting the estimators into the expectation and simplifying. Considering \( E(\hat{\alpha}_{i}) = E(\bar{X}_{i .} - \bar{X}_{. .}) = E(\bar{X}_{i .}) - E(\bar{X}_{. .}) = \alpha_i , we conclude that \( \hat{\alpha}_i\) is an unbiased estimator of \( \alpha_i \). Similarly, it can be shown that \( \hat{\beta}_j \) and \( \hat{\mu} \) are also unbiased.
02

Computing variances of estimators

Step 1: Definition of variance: The variance of a variable X, denoted by \( var(X) \) or \( σ^2 \) is the expectation of the squared deviation of X from its own mean. \n Step 2: Given the estimators \( \hat{\alpha}_{i} \), \( \hat{\beta}_{j} \), and \( \hat{\mu} \), we need to compute \( var(\hat{\alpha}_{i}) \), \( var(\hat{\beta}_{j}) \), and \( var(\hat{\mu}) \). We do this by substituting the estimators into the variance formula and simplifying. This typically requires knowledge about the distributive nature of variance and expectation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(Bonferroni Multiple Comparison Procedure). In the notation of this section, let \(\left(k_{i 1}, k_{i 2}, \ldots, k_{i b}\right), i=1,2, \ldots, m\), represent a finite number of \(b\) -tuples. The problem is to find simultaneous confidence intervals for \(\sum_{j=1}^{b} k_{i j} \mu_{j}, i=1,2, \ldots, m\), by a method different from that of Scheffé. Define the random variable \(T_{i}\) by $$ \left(\sum_{j=1}^{b} k_{i j} \bar{X}_{. j}-\sum_{j=1}^{b} k_{i j} \mu_{j}\right) / \sqrt{\left(\sum_{j=1}^{b} k_{i j}^{2}\right) V / a}, \quad i=1,2, \ldots, m $$ (a) Let the event \(A_{i}^{c}\) be given by \(-c_{i} \leq T_{i} \leq c_{i}, i=1,2, \ldots, m\). Find the random variables \(U_{i}\) and \(W_{i}\) such that \(U_{i} \leq \sum_{1}^{b} k_{i j} \mu_{j} \leq W_{j}\) is equivalent to \(A_{i}^{c}\) (b) Select \(c_{i}\) such that \(P\left(A_{i}^{c}\right)=1-\alpha / m ;\) that is, \(P\left(A_{i}\right)=\alpha / m .\) Use Exercise 9.4.1 to determine a lower bound on the probability that simultaneously the random intervals \(\left(U_{1}, W_{1}\right), \ldots,\left(U_{m}, W_{m}\right)\) include \(\sum_{j=1}^{b} k_{1 j} \mu_{j}, \ldots, \sum_{j=1}^{b} k_{m j} \mu_{j}\) respectively. (c) Let \(a=3, b=6\), and \(\alpha=0.05\). Consider the linear functions \(\mu_{1}-\mu_{2}, \mu_{2}-\mu_{3}\), \(\mu_{3}-\mu_{4}, \mu_{4}-\left(\mu_{5}+\mu_{6}\right) / 2\), and \(\left(\mu_{1}+\mu_{2}+\cdots+\mu_{6}\right) / 6 .\) Here \(m=5 .\) Show that the lengths of the confidence intervals given by the results of Part (b) are shorter than the corresponding ones given by the method of Scheffé as described in the text. If \(m\) becomes sufficiently large, however, this is not the case.

Let \(X_{1}, X_{2}, X_{3}, X_{4}\) be a random sample of size \(n=4\) from the normal distribution \(N(0,1) .\) Show that \(\sum_{i=1}^{4}\left(X_{i}-\bar{X}\right)^{2}\) equals $$ \frac{\left(X_{1}-X_{2}\right)^{2}}{2}+\frac{\left[X_{3}-\left(X_{1}+X_{2}\right) / 2\right]^{2}}{3 / 2}+\frac{\left[X_{4}-\left(X_{1}+X_{2}+X_{3}\right) / 3\right]^{2}}{4 / 3} $$ and argue that these three terms are independent, each with a chi-square distribution with 1 degree of freedom.

Show that \(\sum_{i=1}^{n}\left[Y_{i}-\alpha-\beta\left(x_{i}-\bar{x}\right)\right]^{2}=n(\hat{\alpha}-\alpha)^{2}+(\hat{\beta}-\beta)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{n}\left[Y_{i}-\hat{\alpha}-\hat{\beta}\left(x_{i}-\bar{x}\right)\right]^{2} .\)

Let \(X_{1 j}, X_{2 j}, \ldots, X_{a_{f} j}\) represent independent random samples of sizes \(a_{j}\) from a normal distribution with means \(\mu_{j}\) and variances \(\sigma^{2}, j=1,2, \ldots, b\). Show that $$ \sum_{j=1}^{b} \sum_{i=1}^{a_{j}}\left(X_{i j}-\bar{X}_{. .}\right)^{2}=\sum_{j=1}^{b} \sum_{i=1}^{a_{j}}\left(X_{i j}-\bar{X}_{. j}\right)^{2}+\sum_{j=1}^{b} a_{j}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2} $$ or \(Q^{\prime}=Q_{3}^{\prime}+Q_{4}^{\prime} .\) Here \(\bar{X}_{. .}=\sum_{j=1}^{b} \sum_{i=1}^{a_{j}} X_{i j} / \sum_{j=1}^{b} a_{j}\) and \(\bar{X}_{. j}=\sum_{i=1}^{a_{j}} X_{i j} / a_{j} .\) If \(\mu_{1}=\mu_{2}=\) \(\cdots=\mu_{b}\), show that \(Q^{\prime} / \sigma^{2}\) and \(Q_{3}^{\prime} / \sigma^{2}\) have chi-square distributions. Prove that \(Q_{3}^{\prime}\) and \(Q_{4}^{\prime}\) are independent, and hence \(Q_{4}^{\prime} / \sigma^{2}\) also has a chi-square distribution. If the likelihood ratio \(\Lambda\) is used to test \(H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{b}=\mu, \mu\) unspecified and \(\sigma^{2}\) unknown against all possible alternatives, show that \(\Lambda \leq \lambda_{0}\) is equivalent to the computed \(F \geq c\), where $$ F=\frac{\left(\sum_{j=1}^{b} a_{j}-b\right) Q_{4}^{\prime}}{(b-1) Q_{3}^{\prime}} $$ What is the distribution of \(F\) when \(H_{0}\) is true?

Let \(X_{1}, X_{2}, X_{3}\) be a random sample from the normal distribution \(N\left(0, \sigma^{2}\right)\). Are the quadratic forms \(X_{1}^{2}+3 X_{1} X_{2}+X_{2}^{2}+X_{1} X_{3}+X_{3}^{2}\) and \(X_{1}^{2}-2 X_{1} X_{2}+\frac{2}{3} X_{2}^{2}-\) \(2 X_{1} X_{2}-X_{3}^{2}\) independent or dependent?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free