Chapter 9: Problem 13
Fit by the method of least squares the plane \(z=a+b x+c y\) to the five points \((x, y, z):(-1,-2,5),(0,-2,4),(0,0,4),(1,0,2),(2,1,0)\).
Chapter 9: Problem 13
Fit by the method of least squares the plane \(z=a+b x+c y\) to the five points \((x, y, z):(-1,-2,5),(0,-2,4),(0,0,4),(1,0,2),(2,1,0)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeUsing the background of the two-way classification with one observation per cell, show that the maximum likelihood estimator of \(\alpha_{i}, \beta_{j}\), and \(\mu\) are \(\hat{\alpha}_{i}=\bar{X}_{i .}-\bar{X}_{. .}\) \(\hat{\beta}_{j}=\bar{X}_{. j}-\bar{X}_{. .}\), and \(\hat{\mu}=\bar{X}_{. .}\), respectively. Show that these are unbiased estimators of their respective parameters and compute \(\operatorname{var}\left(\hat{\alpha}_{i}\right), \operatorname{var}\left(\hat{\beta}_{j}\right)\), and \(\operatorname{var}(\hat{\mu})\).
Let \(\mu_{1}, \mu_{2}, \mu_{3}\) be, respectively, the means of three normal distributions with a common but unknown variance \(\sigma^{2}\). In order to test, at the \(\alpha=5\) percent significance level, the hypothesis \(H_{0}: \mu_{1}=\mu_{2}=\mu_{3}\) against all possible alternative hypotheses, we take an independent random sample of size 4 from each of these distributions. Determine whether we accept or reject \(H_{0}\) if the observed values from these three distributions are, respectively, $$ \begin{array}{lrrrr} X_{1}: & 5 & 9 & 6 & 8 \\ X_{2}: & 11 & 13 & 10 & 12 \\ X_{3}: & 10 & 6 & 9 & 9 \end{array} $$
If \(A_{1}, A_{2}, \ldots, A_{k}\) are events, prove, by induction, Boole's inequality $$ P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right) \leq \sum_{1}^{k} P\left(A_{i}\right) $$ Then show that $$ P\left(A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{k}^{c}\right) \geq 1-\sum_{1}^{b} P\left(A_{i}\right) $$
Here \(Q_{1}\) and \(Q_{2}\) are quadratic forms in observations of a random sample from \(N(0,1) .\) If \(Q_{1}\) and \(Q_{2}\) are independent and if \(Q_{1}+Q_{2}\) has a chi-square distribution, prove that \(Q_{1}\) and \(Q_{2}\) are chi-square variables.
With the background of the two-way classification with \(c>1\) observations per cell, show that the maximum likelihood estimators of the parameters are $$ \begin{aligned} \hat{\alpha}_{i} &=\bar{X}_{i . .}-\bar{X}_{\ldots} \\ \hat{\beta}_{j} &=\bar{X}_{. j .}-\bar{X}_{\cdots} \\ \hat{\gamma}_{i j} &=\bar{X}_{i j .}-\bar{X}_{i .}-\bar{X}_{. j}+\bar{X}_{\ldots} \\ \hat{\mu} &=\bar{X}_{\ldots} \end{aligned} $$ Show that these are unbiased estimators of the respective parameters. Compute the variance of each estimator.
What do you think about this solution?
We value your feedback to improve our textbook solutions.