Chapter 9: Problem 13
Fit by the method of least squares the plane \(z=a+b x+c y\) to the five points \((x, y, z):(-1,-2,5),(0,-2,4),(0,0,4),(1,0,2),(2,1,0)\).
Chapter 9: Problem 13
Fit by the method of least squares the plane \(z=a+b x+c y\) to the five points \((x, y, z):(-1,-2,5),(0,-2,4),(0,0,4),(1,0,2),(2,1,0)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeUsing the notation of this section, assume that the means satisfy the condition that \(\mu=\mu_{1}+(b-1) d=\mu_{2}-d=\mu_{3}-d=\cdots=\mu_{b}-d .\) That is, the last \(b-1\) means are equal but differ from the first mean \(\mu_{1}\), provided that \(d \neq 0\). Let independent random samples of size \(a\) be taken from the \(b\) normal distributions with common unknown variance \(\sigma^{2}\). (a) Show that the maximum likelihood estimators of \(\mu\) and \(d\) are \(\hat{\mu}=\bar{X} . .\) and $$ \hat{d}=\frac{\sum_{j=2}^{b} \bar{X}_{. j} /(b-1)-\bar{X}_{.1}}{b} $$ (b) Using Exercise \(9.1 .3\), find \(Q_{6}\) and \(Q_{7}=c \hat{d}^{2}\) so that, when \(d=0, Q_{7} / \sigma^{2}\) is \(\chi^{2}(1)\) and $$ \sum_{i=1}^{a} \sum_{j=1}^{b}\left(X_{i j}-\bar{X}_{n}\right)^{2}=Q_{3}+Q_{6}+Q_{7} $$ (c) Argue that the three terms in the right-hand member of Part (b), once divided by \(\sigma^{2}\), are independent random variables with chi-square distributions, provided that \(d=0\). (d) The ratio \(Q_{7} /\left(Q_{3}+Q_{6}\right)\) times what constant has an \(F\) -distribution, provided that \(d=0\) ? Note that this \(F\) is really the square of the two-sample \(T\) used to test the equality of the mean of the first distribution and the common mean of the other distributions, in which the last \(b-1\) samples are combined into one.
Let \(\boldsymbol{X}^{\prime}=\left[X_{1}, X_{2}, \ldots, X_{n}\right]\), where \(X_{1}, X_{2}, \ldots, X_{n}\) are observations of a random sample from a distribution which is \(N\left(0, \sigma^{2}\right) .\) Let \(b^{\prime}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]\) be a real nonzero vector, and let \(\boldsymbol{A}\) be a real symmetric matrix of order \(n\). Prove that the linear form \(\boldsymbol{b}^{\prime} \boldsymbol{X}\) and the quadratic form \(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\) are independent if and only if \(\boldsymbol{b}^{\prime} \boldsymbol{A}=\mathbf{0}\). Use this fact to prove that \(\boldsymbol{b}^{\prime} \boldsymbol{X}\) and \(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\) are independent if and only if the two quadratic forms, \(\left(\boldsymbol{b}^{\prime} \boldsymbol{X}\right)^{2}=\boldsymbol{X}^{\prime} \boldsymbol{b} \boldsymbol{b}^{\prime} \boldsymbol{X}\) and \(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\) are independent.
Let \(Q=X_{1} X_{2}-X_{3} X_{4}\), where \(X_{1}, X_{2}, X_{3}, X_{4}\) is a random sample of size 4 from a distribution which is \(N\left(0, \sigma^{2}\right) .\) Show that \(Q / \sigma^{2}\) does not have a chi-square distribution. Find the mgf of \(Q / \sigma^{2}\).
Suppose \(\mathbf{A}\) is a real symmetric matrix. If the eigenvalues of \(\mathbf{A}\) are only 0 's and 1 's then prove that \(\mathbf{A}\) is idempotent.
Let \(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{k}\) be the matrices of \(k>2\) quadratic forms \(Q_{1}, Q_{2}, \ldots, Q_{k}\) in the observations of a random sample of size \(n\) from a distribution which is \(N\left(0, \sigma^{2}\right)\). Prove that the pairwise independence of these forms implies that they are mutually independent. Hint: Show that \(A_{i} A_{j}=0, i \neq j\), permits \(E\left[\exp \left(t_{1} Q_{1}+t_{2} Q_{2}+\cdots t_{k} Q_{k}\right)\right]\) to be written as a product of the mgfs of \(Q_{1}, Q_{2}, \ldots, Q_{k}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.