Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Fit \(y=a+x\) to the data $$ \begin{array}{l|lll} \mathrm{x} & 0 & 1 & 2 \\ \hline \mathrm{y} & 1 & 3 & 4 \end{array} $$ by the method of least squares.

Short Answer

Expert verified
The line that best fits the given data by the method of least squares is \(y = 1 + 1.67\).

Step by step solution

01

Calculate Summations

First, calculate the summations needed in the following calculations, which are \(\sum x\) and \(\sum y\). Here, \(\sum x = 0 + 1 + 2 = 3\) and \(\sum y = 1 + 3 + 4 = 8\)
02

Find the Mean Values

Find the mean values of x and y with the formulas \(\overline{x} =\frac{\sum x}{n}\) and \(\overline{y} =\frac{\sum y}{n}\). In this case, \(\overline{x} =\frac{3}{3} = 1\) and \(\overline{y} = \frac{8}{3} \approx 2.67\)
03

Determine the Value of 'a'

As the given line is \(y = a + x\), this can be re-written in slope-intercept form as \(y = mx + b\), with \(m=1\) and \(b=a\). By comparing to the general line equation, determine 'a' as the y-intercept which is the mean value of y minus the mean value of x multiplied by the slope. Thus, \(a =\overline{y} - m\cdot\overline{x}\), i.e., \(a = 2.67 - 1\cdot 1 = 1.67\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The driver of a diesel-powered automobile decided to test the quality of three types of diesel fuel sold in the area based on mpg. Test the null hypothesis that the three means are equal using the following data. Make the usual assumptions and take \(\alpha=0.05\). $$ \begin{array}{llllll} \text { Brand A: } & 38.7 & 39.2 & 40.1 & 38.9 & \\ \text { Brand B: } & 41.9 & 42.3 & 41.3 & & \\ \text { Brand C: } & 40.8 & 41.2 & 39.5 & 38.9 & 40.3 \end{array} $$

Let \(Q_{1}\) and \(Q_{2}\) be two nonnegative quadratic forms in the observations of a random sample from a distribution which is \(N\left(0, \sigma^{2}\right) .\) Show that another quadratic form \(Q\) is independent of \(Q_{1}+Q_{2}\) if and only if \(Q\) is independent of each of \(Q_{1}\) and \(Q_{2}\) Hint: \(\quad\) Consider the orthogonal transformation that diagonalizes the matrix of \(Q_{1}+Q_{2}\). After this transformation, what are the forms of the matrices \(Q, Q_{1}\) and \(Q_{2}\) if \(Q\) and \(Q_{1}+Q_{2}\) are independent?

Let \(Q=X_{1} X_{2}-X_{3} X_{4}\), where \(X_{1}, X_{2}, X_{3}, X_{4}\) is a random sample of size 4 from a distribution which is \(N\left(0, \sigma^{2}\right) .\) Show that \(Q / \sigma^{2}\) does not have a chi-square distribution. Find the mgf of \(Q / \sigma^{2}\).

(Bonferroni Multiple Comparison Procedure). In the notation of this section, let \(\left(k_{i 1}, k_{i 2}, \ldots, k_{i b}\right), i=1,2, \ldots, m\), represent a finite number of \(b\) -tuples. The problem is to find simultaneous confidence intervals for \(\sum_{j=1}^{b} k_{i j} \mu_{j}, i=1,2, \ldots, m\), by a method different from that of Scheffé. Define the random variable \(T_{i}\) by $$ \left(\sum_{j=1}^{b} k_{i j} \bar{X}_{. j}-\sum_{j=1}^{b} k_{i j} \mu_{j}\right) / \sqrt{\left(\sum_{j=1}^{b} k_{i j}^{2}\right) V / a}, \quad i=1,2, \ldots, m $$ (a) Let the event \(A_{i}^{c}\) be given by \(-c_{i} \leq T_{i} \leq c_{i}, i=1,2, \ldots, m\). Find the random variables \(U_{i}\) and \(W_{i}\) such that \(U_{i} \leq \sum_{1}^{b} k_{i j} \mu_{j} \leq W_{j}\) is equivalent to \(A_{i}^{c}\) (b) Select \(c_{i}\) such that \(P\left(A_{i}^{c}\right)=1-\alpha / m ;\) that is, \(P\left(A_{i}\right)=\alpha / m .\) Use Exercise 9.4.1 to determine a lower bound on the probability that simultaneously the random intervals \(\left(U_{1}, W_{1}\right), \ldots,\left(U_{m}, W_{m}\right)\) include \(\sum_{j=1}^{b} k_{1 j} \mu_{j}, \ldots, \sum_{j=1}^{b} k_{m j} \mu_{j}\) respectively. (c) Let \(a=3, b=6\), and \(\alpha=0.05\). Consider the linear functions \(\mu_{1}-\mu_{2}, \mu_{2}-\mu_{3}\), \(\mu_{3}-\mu_{4}, \mu_{4}-\left(\mu_{5}+\mu_{6}\right) / 2\), and \(\left(\mu_{1}+\mu_{2}+\cdots+\mu_{6}\right) / 6 .\) Here \(m=5 .\) Show that the lengths of the confidence intervals given by the results of Part (b) are shorter than the corresponding ones given by the method of Scheffé as described in the text. If \(m\) becomes sufficiently large, however, this is not the case.

Here \(Q_{1}\) and \(Q_{2}\) are quadratic forms in observations of a random sample from \(N(0,1) .\) If \(Q_{1}\) and \(Q_{2}\) are independent and if \(Q_{1}+Q_{2}\) has a chi-square distribution, prove that \(Q_{1}\) and \(Q_{2}\) are chi-square variables.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free