Chapter 9: Problem 12
Fit \(y=a+x\) to the data $$ \begin{array}{l|lll} \mathrm{x} & 0 & 1 & 2 \\ \hline \mathrm{y} & 1 & 3 & 4 \end{array} $$ by the method of least squares.
Chapter 9: Problem 12
Fit \(y=a+x\) to the data $$ \begin{array}{l|lll} \mathrm{x} & 0 & 1 & 2 \\ \hline \mathrm{y} & 1 & 3 & 4 \end{array} $$ by the method of least squares.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose \(\boldsymbol{Y}\) is an \(n \times 1\) random vector, \(\boldsymbol{X}\) is an \(n \times p\) matrix of known constants of rank \(p\), and \(\beta\) is a \(p \times 1\) vector of regression coefficients. Let \(\boldsymbol{Y}\) have a \(N\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)\) distribution. Discuss the joint pdf of \(\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y}\) and \(\boldsymbol{Y}^{\prime}\left[\boldsymbol{I}-\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}\right] \boldsymbol{Y} / \sigma^{2}\)
Let \(Q_{1}\) and \(Q_{2}\) be two nonnegative quadratic forms in the observations of a random sample from a distribution which is \(N\left(0, \sigma^{2}\right) .\) Show that another quadratic form \(Q\) is independent of \(Q_{1}+Q_{2}\) if and only if \(Q\) is independent of each of \(Q_{1}\) and \(Q_{2}\) Hint: \(\quad\) Consider the orthogonal transformation that diagonalizes the matrix of \(Q_{1}+Q_{2}\). After this transformation, what are the forms of the matrices \(Q, Q_{1}\) and \(Q_{2}\) if \(Q\) and \(Q_{1}+Q_{2}\) are independent?
In Exercise 9.2.1, show that the linear functions \(X_{i j}-X_{. j}\) and \(X_{. j}-X\).. are uncorrelated. Hint: Recall the definition of \(\bar{X}_{. j}\) and \(\bar{X}_{. .}\) and, without loss of generality, we can let \(E\left(X_{i j}\right)=0\) for all \(i, j\)
Show that \(\sum_{i=1}^{n}\left[Y_{i}-\alpha-\beta\left(x_{i}-\bar{x}\right)\right]^{2}=n(\hat{\alpha}-\alpha)^{2}+(\hat{\beta}-\beta)^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{n}\left[Y_{i}-\hat{\alpha}-\hat{\beta}\left(x_{i}-\bar{x}\right)\right]^{2} .\)
Let \(X_{1 j}, X_{2 j}, \ldots, X_{a_{f} j}\) represent independent random samples of sizes \(a_{j}\) from a normal distribution with means \(\mu_{j}\) and variances \(\sigma^{2}, j=1,2, \ldots, b\). Show that $$ \sum_{j=1}^{b} \sum_{i=1}^{a_{j}}\left(X_{i j}-\bar{X}_{. .}\right)^{2}=\sum_{j=1}^{b} \sum_{i=1}^{a_{j}}\left(X_{i j}-\bar{X}_{. j}\right)^{2}+\sum_{j=1}^{b} a_{j}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2} $$ or \(Q^{\prime}=Q_{3}^{\prime}+Q_{4}^{\prime} .\) Here \(\bar{X}_{. .}=\sum_{j=1}^{b} \sum_{i=1}^{a_{j}} X_{i j} / \sum_{j=1}^{b} a_{j}\) and \(\bar{X}_{. j}=\sum_{i=1}^{a_{j}} X_{i j} / a_{j} .\) If \(\mu_{1}=\mu_{2}=\) \(\cdots=\mu_{b}\), show that \(Q^{\prime} / \sigma^{2}\) and \(Q_{3}^{\prime} / \sigma^{2}\) have chi-square distributions. Prove that \(Q_{3}^{\prime}\) and \(Q_{4}^{\prime}\) are independent, and hence \(Q_{4}^{\prime} / \sigma^{2}\) also has a chi-square distribution. If the likelihood ratio \(\Lambda\) is used to test \(H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{b}=\mu, \mu\) unspecified and \(\sigma^{2}\) unknown against all possible alternatives, show that \(\Lambda \leq \lambda_{0}\) is equivalent to the computed \(F \geq c\), where $$ F=\frac{\left(\sum_{j=1}^{b} a_{j}-b\right) Q_{4}^{\prime}}{(b-1) Q_{3}^{\prime}} $$ What is the distribution of \(F\) when \(H_{0}\) is true?
What do you think about this solution?
We value your feedback to improve our textbook solutions.