Chapter 8: Problem 9
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be iid with pmf \(f(x ; p)=p^{x}(1-p)^{1-x}, x=0,1\), zero elsewhere. Show that \(C=\left\\{\left(x_{1}, \ldots, x_{n}\right): \sum_{1}^{n} x_{i} \leq c\right\\}\) is a best critical region for testing \(H_{0}: p=\frac{1}{2}\) against \(H_{1}: p=\frac{1}{3} .\) Use the Central Limit Theorem to find \(n\) and \(c\) so that approximately \(P_{H_{0}}\left(\sum_{1}^{n} X_{i} \leq c\right)=0.10\) and \(P_{H_{1}}\left(\sum_{1}^{n} X_{i} \leq c\right)=0.80\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.