Chapter 6: Problem 2
Given \(f(x ; \theta)=1 / \theta, 0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 6: Problem 2
Given \(f(x ; \theta)=1 / \theta, 0
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X_{1}, X_{2}, \ldots, X_{n}\) and \(Y_{1}, Y_{2}, \ldots, Y_{m}\) be independent random samples from the two normal distributions \(N\left(0, \theta_{1}\right)\) and \(N\left(0, \theta_{2}\right)\). (a) Find the likelihood ratio \(\Lambda\) for testing the composite hypothesis \(H_{0}: \theta_{1}=\theta_{2}\) against the composite alternative \(H_{1}: \theta_{1} \neq \theta_{2}\). (b) This \(\Lambda\) is a function of what \(F\) -statistic that would actually be used in this test?
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be a random sample from a distribution with
pdf \(f(x ; \theta)=\theta \exp \left\\{-|x|^{\theta}\right\\} / 2 \Gamma(1 /
\theta),-\infty
Let \(X_{1}, X_{2}, \ldots, X_{n}\) be iid, each with the distribution having pdf \(f\left(x ; \theta_{1}, \theta_{2}\right)=\) \(\left(1 / \theta_{2}\right) e^{-\left(x-\theta_{1}\right) / \theta_{2}}, \theta_{1} \leq x<\infty,-\infty<\theta_{2}<\infty\), zero elsewhere. Find the maximum likelihood estimators of \(\theta_{1}\) and \(\theta_{2}\).
Prove that \(\bar{X}\), the mean of a random sample of size \(n\) from a distribution that is \(N\left(\theta, \sigma^{2}\right),-\infty<\theta<\infty\), is, for every known \(\sigma^{2}>0\), an efficient estimator of \(\theta\).
Let \(X_{1}, X_{2}, \ldots, X_{n}\) and \(Y_{1}, Y_{2}, \ldots, Y_{m}\) be independent random samples from \(N\left(\theta_{1}, \theta_{3}\right)\) and \(N\left(\theta_{2}, \theta_{4}\right)\) distributions, respectively. (a) If \(\Omega \subset R^{3}\) is defined by $$\Omega=\left\\{\left(\theta_{1}, \theta_{2}, \theta_{3}\right):-\infty<\theta_{i}<\infty, i=1,2 ; 0<\theta_{3}=\theta_{4}<\infty\right\\}$$ find the mles of \(\theta_{1}, \theta_{2}, \theta_{3}\). (b) If \(\Omega \subset R^{2}\) is defined by $$\Omega=\left\\{\left(\theta_{1}, \theta_{3}\right):-\infty<\theta_{1}=\theta_{2}<\infty ; 0<\theta_{3}=\theta_{4}<\infty\right\\}$$ find the mles of \(\theta_{1}\) and \(\theta_{3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.