Chapter 6: Problem 12
A machine shop that manufactures toggle levers has both a day and a night shift. A toggle lever is defective if a standard nut cannot be screwed onto the threads. Let \(p_{1}\) and \(p_{2}\) be the proportion of defective levers among those manufactured by the day and night shifts, respectively. We shall test the null hypothesis, \(H_{0}: p_{1}=p_{2}\), against a two-sided alternative hypothesis based on two random samples, each of 1000 levers taken from the production of the respective shifts. Use the test statistic \(Z^{*}\) given in Example \(6.5 .3\). (a) Sketch a standard normal pdf illustrating the critical region having \(\alpha=0.05\). (b) If \(y_{1}=37\) and \(y_{2}=53\) defectives were observed for the day and night shifts, respectively, calculate the value of the test statistic and the approximate \(p-\) value (note that this is a two-sided test). Locate the calculated test statistic on your figure in Part (a) and state your conclusion. Obtain the approximate \(p\) -value of the test.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.