Chapter 5: Problem 25
Let \(X_{1}, X_{2}, \ldots, X_{n}\) and \(Y_{1}, Y_{2}, \ldots, Y_{m}\) be two independent random samples from the respective normal distributions \(N\left(\mu_{1}, \sigma_{1}^{2}\right)\) and \(N\left(\mu_{2}, \sigma_{2}^{2}\right)\), where the four parameters are unknown. To construct a confidence interval for the ratio, \(\sigma_{1}^{2} / \sigma_{2}^{2}\), of the variances, form the quotient of the two independent chi-square variables, each divided by its degrees of freedom, namely $$ F=\frac{\frac{(m-1) S_{2}^{2}}{\sigma_{2}^{2}} /(m-1)}{\frac{(n-1) S_{1}^{2}}{\sigma_{1}^{2}} /(n-1)}=\frac{S_{2}^{2} / \sigma_{2}^{2}}{S_{1}^{2} / \sigma_{1}^{2}} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.