Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Solve using Cramer's rule

3x+y-6z=-32x+6y+3z=03x+2y-3z=-6

Short Answer

Expert verified

Thesolutionofthelinearequationsis(x=-6,y=3,z=-2).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1. Given information

The given linear equations are

3x+y-6z=-32x+6y+3z=03x+2y-3z=-6

02

Step 2. First find the determinant D by using the coefficients of the variables.  

D=31-626332-3D=3((6×-3)-(3×2))-1((2×-3)-(3×3))-6((2×2)-(6×3))D=3(-18-6)-1(-6-9)-6(4-18)D=-72+15+84D=27

03

Step 3.  Evaluate the determinant Dx, Dy and Dz by using the constants to replace the coefficients of x, y and z. 

Dx=-31-6063-62-3Dx=-3((6×-3)-(3×2))-1((0×-3)-(3×-6))-6((2×0)-(6×-6))Dx=-3(-18-6)-1(18)-6(36)Dx=+72-18-216Dx=-162Dy=3-3-62033-6-3Dy=3((0×-3)-(3×-6))+3((2×-3)-(3×3))-6((-6×2)-(0×3))Dy=3(18)+3(-6-9)-6(-12)Dy=54-45+72Dy=81Dz=31-326032-6Dz=3((6×-6)-(0×2))-1((2×-6)-(0×3))-3((2×2)-(6×3))Dz=3(-36)-1(-12)-3(4-18)Dz=-108+12+42Dz=-54

04

Step 4. Find x, y and z. 

x=DxD,y=DyDandz=DzDx=-16227=-6y=8127=3z=-5427=-2

The solution of the linear equations is (-6,3,-2).

By putting the values in the equations it satisfies the equations and the solution to these linear equations are (-6,3,-2).

05

Step 5. Checking the equation

Putting the values
x=-6y=3z=-2
3x+y-6z=-33(-6)+3-6(-2)=-3-18+3+12=-3-3=-3trueNowPuttingthevalueofx=-6,y=3andz=-2intheequation2x+6y+3z=02(-6)+6(3)+3(-2)=0-12+18-6=00=0Puttingthevalueofx=-6,y=3andz=-2intheequation3x+2y-3z=-63(-6)+2(3)-3(-2)=-6-18+6+6=-6-6=-6

Hence these points satisfy the equations hence they are the solution to these equations.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free