Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To solve the system of linear equations by elimination method:

5x+2y+z=5-3x-y+2z=62x+3y-3z=5

Short Answer

Expert verified

The solution is(-2,6,3)(-2,6)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1. Given information

We have been given equation

5x+2y+z=5..(1)-3x-y+2z=6..(2)2x+3y-3z=5(3)

02

Step 2. Solving equation

Multiply equation 2with 2

2(-3x-y+2z)=2(6)-6x-2y+4z=12(4)

Lets consider equations 1and 4

Add both the equation:

We get:

-x+5z=17...(5)

Multiply equation 2with 3

localid="1644476065194" 3(-3x-y+2z)=3(6)-9x-3y+6z=18..................(6)

From equations 3 and 6

localid="1644476607766" 2x+3y-3z=5-9x-3y+6z=18-7x+3z=23-7x+3z=23(7)

Multiply equation 5with -7.

-7(-x+5z)=-7(17)7x-35z=-119.................(8)

In order to get opposite coefficients oflocalid="1644476782615" xmultiply equation 2 with localid="1644476773997" -7

Consider equations localid="1645252459553" 7and localid="1645252391399" 8

and solve for localid="1645252543588" z

localid="1644476797962" -7x+3z=237x-35z=-119-32z=-9632z=96z=9632=3

Substitute localid="1644476825823" z=3in the equation

localid="1644476816932" -x+5z=17and solve for localid="1645252381659" x

localid="1645252184150" -x+5z=17-x+5(3)=17-x+15=17-x=17-15-x=2x=-2

Now we will substitutelocalid="1645252201161" x=-2,localid="1644476807751" z=3in the equation localid="1644476791031" 5x+2y+z=5and solve for localid="1645252443741" y

localid="1645252686964" 5x+2y+z=55(-2)+2y+3=5-10+2y+3=52y-7=52y=5+72y=12y=6

The solution is (-2,6,3)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free