Chapter 4: Problem 9
Verify that \(y=\sin x \cos x-\cos x\) is a solution of the initial value
problem \(y^{\prime}+(\tan x) y=\cos ^{2} x\) \(y(0)=-1\), on the interval \(-\pi /
2
Chapter 4: Problem 9
Verify that \(y=\sin x \cos x-\cos x\) is a solution of the initial value
problem \(y^{\prime}+(\tan x) y=\cos ^{2} x\) \(y(0)=-1\), on the interval \(-\pi /
2
All the tools & learning materials you need for study success - in one app.
Get started for freeA function \(y(t)\) satisfies the differential equation \(\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{y}^{4}-6 \mathrm{y}^{3}+5 \mathrm{y}^{2}\) (a) What are the constant solutions of the equation? (b) For what values of \(y\) is y decreasing ?
Solve the following differential equations : (i) \(\left(2 x \cos y+y^{2} \cos x\right) d x\) \(+\left(2 y \sin x-x^{2} \sin y\right) d y=0\) (ii) \(\frac{x^{3} d x+y x^{2} d y}{\sqrt{x^{2}+y^{2}}}=y d x-x d y\)
Solve \(\left(1+\mathrm{e}^{\frac{x}{y}}\right) \mathrm{d} \mathrm{x}+\mathrm{e}^{\frac{x}{y}}\left(1-\frac{\mathrm{x}}{\mathrm{y}}\right) \mathrm{dy}=0\)
Solve the following differential equations: (i) \(\frac{d y}{d x}=y \tan x-2 \sin x\) (ii) \(\left(1-x^{2}\right) \frac{d y}{d x}+2 x y=x\left(1-x^{2}\right)^{1 / 2}\) (iii) \((\mathrm{x}+\mathrm{a}) \frac{\mathrm{dy}}{\mathrm{dx}}-3 \mathrm{y}=(\mathrm{x}+\mathrm{a})^{5}\) (iv) \((x+1) \frac{d y}{d x}-n y=e^{x}(x+1)^{n+1}\).
\(x y^{\prime 2}-y y^{\prime}-y^{\prime}+1=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.