Chapter 4: Problem 8
Obtain a differential equation of all straight lines which are at a fixed distance ' \(\mathrm{p}\) ' from the origin.
Chapter 4: Problem 8
Obtain a differential equation of all straight lines which are at a fixed distance ' \(\mathrm{p}\) ' from the origin.
All the tools & learning materials you need for study success - in one app.
Get started for freeSolve the following differential equations: (i) \(x d x=\left(\frac{x^{2}}{y}-y^{3}\right) d y\) (ii) \(\frac{y}{x} d x+\left(y^{3}-\ln x\right) d y=0\) (iii) \(\frac{2 x d x}{y^{3}}+\frac{y^{2}-3 x^{2}}{y^{4}} d y=0\) (iv) \(y-y^{\prime} \cos x=y^{2} \cos x(1-\sin x)\)
\(y^{\prime 2}-4 x y^{\prime}+2 y+2 x^{2}=0\) 4
Solve the following differential equations : (i) \(\left(2 x \cos y+y^{2} \cos x\right) d x\) \(+\left(2 y \sin x-x^{2} \sin y\right) d y=0\) (ii) \(\frac{x^{3} d x+y x^{2} d y}{\sqrt{x^{2}+y^{2}}}=y d x-x d y\)
Solve the following differential equations: (i) \(y^{\prime}-y \tan x=\frac{1}{\cos ^{3} x}, y(0)=0\). (ii) \(t\left(1+t^{2}\right) d x=\left(x+x t^{2}-t^{2}\right) d t ; x(1)=\frac{\pi}{4}\). (iii) \(\mathrm{y}^{\prime}-\frac{\mathrm{y}}{1-\mathrm{x}^{2}}=1+\mathrm{x}, \mathrm{y}(0)=1\) (iv) \(2 x y^{\prime}=y+6 x^{5 / 2}-2 \sqrt{x}, y(1)=3 / 2\)
\(\left(x^{2} y+x^{2}\right) d x+\left(y^{2} x-y^{2}\right) d y=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.