Chapter 4: Problem 5
Find an initial-value problem whose solution is \(y=\cos x+\int_{0}^{x} e^{-t^{2}} d t\)
Chapter 4: Problem 5
Find an initial-value problem whose solution is \(y=\cos x+\int_{0}^{x} e^{-t^{2}} d t\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(y_{\llcorner}\)is a solution of \(\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=0\) and \(y_{p}\) is a solution of \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\mathrm{a} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{by}=\mathrm{h}(\mathrm{x})\), show that \(\mathrm{y}_{\mathrm{h}}+\mathrm{y}_{p}\) is also a solution of \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\mathrm{a} \frac{\mathrm{dy}}{\mathrm{d} \mathrm{x}}+\mathrm{by}=\mathrm{h}(\mathrm{x})\)
Solve the following differential equations: (i) \(\frac{d y}{d x}=(4 x+y+1)^{2}, y(0)=1\) \(\left(\frac{x+y-a}{x+y-b}\right) \frac{d y}{d x}=\left(\frac{x+y+a}{x+y+b}\right)\) (iii) \(\frac{d y}{d x}+\sin \frac{x+y}{2}=\sin \frac{x-y}{2}\) (iv) \(\frac{d y}{d x}-x \tan (y-x)=1\)
Find the general solution of the first order nonhomogeneous linear equation \(\mathrm{y}^{\prime}+\mathrm{p}(\mathrm{x}) \mathrm{y}=\mathrm{q}(\mathrm{x})\) if two particular solutions of it, \(\mathrm{y}_{1}(\mathrm{x})\) and \(\mathrm{y}_{2}(\mathrm{x})\), are known.
\(x^{2} y \frac{d y}{d x}=(x+1)(y+1)\)
Find all solutions of \((x-2)(x-3) y^{\prime}+2 y\) \(=(\mathrm{x}-1)(\mathrm{x}-2)\) on each of the following intervals: (a) \((-\infty, 2)\) (b) \((2,3)\) (c) \((3, \infty)\). Prove that all solutions tend to a finite limit as \(\mathrm{x} \rightarrow 2\), but that none has a finitie limit as \(\mathrm{x} \rightarrow 3\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.