Chapter 4: Problem 3
Show that \(V=(A / r)+B\) is a solution of the differential equation \(\frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{dr}^{2}}+\frac{2}{\mathrm{r}} \frac{\mathrm{dV}}{\mathrm{dr}}=0\).
Chapter 4: Problem 3
Show that \(V=(A / r)+B\) is a solution of the differential equation \(\frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{dr}^{2}}+\frac{2}{\mathrm{r}} \frac{\mathrm{dV}}{\mathrm{dr}}=0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSolve the following differential equations: (i) \(y^{\prime}-y \tan x=\frac{1}{\cos ^{3} x}, y(0)=0\). (ii) \(t\left(1+t^{2}\right) d x=\left(x+x t^{2}-t^{2}\right) d t ; x(1)=\frac{\pi}{4}\). (iii) \(\mathrm{y}^{\prime}-\frac{\mathrm{y}}{1-\mathrm{x}^{2}}=1+\mathrm{x}, \mathrm{y}(0)=1\) (iv) \(2 x y^{\prime}=y+6 x^{5 / 2}-2 \sqrt{x}, y(1)=3 / 2\)
A body in a room at \(60^{\circ}\) cools from \(200^{\circ}\) to \(120^{\circ}\) in halfan hour. (a) Show that its tmperature after \(\mathrm{t}\) minutes is \(60+140 \mathrm{e}^{-\mathrm{lt}}\), where \(\mathrm{k}=(\ln 7-\ln 3) / 30\) (b) Show that the time \(t\) required to reach a temperature of \(\mathrm{T}\) degrees is given by the formula \(\mathrm{t}=[\ln 140-\ln (\mathrm{T}-60)] / \mathrm{k}\), where \(60<\mathrm{T} \leq 200\). (c) Find the time at which the temperature is \(90^{\circ}\). (d) Find a formula for the temperature of the body at time \(t\) if the room temperature is not kept constant but falls at a rate of \(1^{\circ}\) each ten minutes. Assume the room temperature is \(60^{\circ}\) when the body temperature is \(200^{\circ}\).
\(\left(\mathrm{y}-\frac{\mathrm{xdy}}{\mathrm{d} x}\right)=3\left(1-\mathrm{x}^{2} \frac{\mathrm{dy}}{\mathrm{dx}}\right)\)
Solve the following differential equations: (i) \(y^{\prime}-y \ln 2=2^{\sin x}(\cos x-1) \ln 2, y\) being bounded when \(\mathrm{x} \rightarrow \infty\). (ii) \(y^{\prime} \sin x-y \cos x=-\frac{\sin ^{2} x}{x^{2}}, y \rightarrow 0\) as \(x \rightarrow \infty\) (iii) \(x^{2} y^{\prime} \cos \frac{1}{x}-y \sin \frac{1}{x}=-1, y \rightarrow 1\) as \(x \rightarrow \infty\). (iv) \(x^{2} y^{\prime}+y=\left(x^{2}+1\right) e^{x}, y \rightarrow 1\) as \(x \rightarrow \infty\)
\(\mathrm{e}^{x} \sin ^{3} y+\left(1+\mathrm{e}^{2 x}\right) \cos y \cdot y^{\prime}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.