Chapter 4: Problem 3
Find the orthogonal trajectories of the given family of curves : all circles through the points \((1,1)\) and \((-1,-1)\).
Chapter 4: Problem 3
Find the orthogonal trajectories of the given family of curves : all circles through the points \((1,1)\) and \((-1,-1)\).
All the tools & learning materials you need for study success - in one app.
Get started for free\(\left(\mathrm{e}^{y}+1\right) \cos x d x+e^{y} \sin x d y=0\)
Solve the following differential equations: (i) \(\frac{d y}{d x}=\frac{x+y+1}{x+y-1}\) (ii) \(\left(\frac{x+y-1}{x+y-2}\right) \frac{d y}{d x}=\frac{x+y+1}{x+y+2}\)
Solve the following differential equations: (i) \(\frac{d y}{d x}=y \tan x-2 \sin x\) (ii) \(\left(1-x^{2}\right) \frac{d y}{d x}+2 x y=x\left(1-x^{2}\right)^{1 / 2}\) (iii) \((\mathrm{x}+\mathrm{a}) \frac{\mathrm{dy}}{\mathrm{dx}}-3 \mathrm{y}=(\mathrm{x}+\mathrm{a})^{5}\) (iv) \((x+1) \frac{d y}{d x}-n y=e^{x}(x+1)^{n+1}\).
\(\left(\mathrm{y}-\frac{\mathrm{xdy}}{\mathrm{d} x}\right)=3\left(1-\mathrm{x}^{2} \frac{\mathrm{dy}}{\mathrm{dx}}\right)\)
Find the general solution of the linear equation of the first order \(y^{\prime}+p(x) y=q(x)\) if one particular solution, \(\mathrm{y}_{1}(\mathrm{x})\), is known.
What do you think about this solution?
We value your feedback to improve our textbook solutions.