Chapter 4: Problem 18
\(\left(1+x^{2}\right) y^{\prime}-1 / 2 \cos ^{2} 2 y=0, y \rightarrow \frac{7}{2} \pi, x \rightarrow-\infty\).
Chapter 4: Problem 18
\(\left(1+x^{2}\right) y^{\prime}-1 / 2 \cos ^{2} 2 y=0, y \rightarrow \frac{7}{2} \pi, x \rightarrow-\infty\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSolve the following differential equations: (i) \(y^{\prime}-y \ln 2=2^{\sin x}(\cos x-1) \ln 2, y\) being bounded when \(\mathrm{x} \rightarrow \infty\). (ii) \(y^{\prime} \sin x-y \cos x=-\frac{\sin ^{2} x}{x^{2}}, y \rightarrow 0\) as \(x \rightarrow \infty\) (iii) \(x^{2} y^{\prime} \cos \frac{1}{x}-y \sin \frac{1}{x}=-1, y \rightarrow 1\) as \(x \rightarrow \infty\). (iv) \(x^{2} y^{\prime}+y=\left(x^{2}+1\right) e^{x}, y \rightarrow 1\) as \(x \rightarrow \infty\)
\(\mathrm{e}^{x} \sin ^{3} y+\left(1+\mathrm{e}^{2 x}\right) \cos y \cdot y^{\prime}=0\)
Solve the following differential equations : (i) \(\left(2 x \cos y+y^{2} \cos x\right) d x\) \(+\left(2 y \sin x-x^{2} \sin y\right) d y=0\) (ii) \(\frac{x^{3} d x+y x^{2} d y}{\sqrt{x^{2}+y^{2}}}=y d x-x d y\)
Find the curves for which \(\frac{d y}{d x}=\frac{y^{2}+3 x^{2} y}{x^{2}+3 x y^{2}}\), and determine their orthogonal trajectories.
Solve \(y^{\prime} \sqrt{1+x+y}=x+y-1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.