Chapter 2: Problem 9
If \(f\) is continuous on \([a, b], f(x) \geq 0\) on \([a, b]\) and \(\mathrm{f}\left(\mathrm{x}_{0}\right)>0\) for some \(\mathrm{x}_{0}\) in \([\mathrm{a}, \mathrm{b}]\), prove that \(\int_{a}^{b} f(x) d x>0 .\)
Chapter 2: Problem 9
If \(f\) is continuous on \([a, b], f(x) \geq 0\) on \([a, b]\) and \(\mathrm{f}\left(\mathrm{x}_{0}\right)>0\) for some \(\mathrm{x}_{0}\) in \([\mathrm{a}, \mathrm{b}]\), prove that \(\int_{a}^{b} f(x) d x>0 .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute (a) \(\lim _{t \rightarrow 0+} \int_{t}^{1} \frac{1}{x} \mathrm{dx}\) (b) \(\lim _{t \rightarrow 1-} \int_{0}^{t} \tan \frac{\pi}{2} x d x\). How does the result give insight into the fact that neither integrand is integrable over the interval \([0,1] ?\)
Prove that \(\int_{0}^{1} x^{n} \ln x d x=\frac{1}{(n+1)^{2}}, \quad n>-1\)
Evaluate the following integrals: (i) \(\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}} d x\) (ii) \(\int_{-\infty}^{\infty} \frac{1}{e^{x}+e^{-x}} d x\) (iii) \(\int_{3}^{5} \frac{x^{2} d x}{\sqrt{(x-3)(5-x)}}\) (iv) \(\int_{-1}^{1} \frac{d x}{(2-x) \sqrt{1-x^{2}}}\)
The linear density of a rod of length \(4 \mathrm{~m}\) is given by \(\rho(\mathrm{x})=9+2 \sqrt{\mathrm{x}}\) measured in kilograms per metre, where \(\mathrm{x}\) is measured in metres from one end of the rod. Find the total mass of the rod.
Prove that (i) \(\frac{99 \pi}{400}<\int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x<\frac{99 \pi}{200}\) (ii) \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\) (iii) \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\) (iv) \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.