Chapter 2: Problem 9
Find an antiderivative \(\mathrm{F}\) of \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \sin \left(\mathrm{x}^{2}\right)\) such that \(\mathrm{F}(1)=0\).
Chapter 2: Problem 9
Find an antiderivative \(\mathrm{F}\) of \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \sin \left(\mathrm{x}^{2}\right)\) such that \(\mathrm{F}(1)=0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeA function \(\mathrm{f}\) is defined for all real \(\mathrm{x}\) by the formula \(\mathrm{f}(\mathrm{x})=3+\int_{0}^{\mathrm{x}} \frac{1+\sin \mathrm{t}}{2+\mathrm{t}^{2}} \mathrm{dt}\). Without attempting to evaluate this integral, find a quadratic polynomial \(\mathrm{p}(\mathrm{x})=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\) such that \(\mathrm{p}(0)=\mathrm{f}(0), \mathrm{p}^{\prime}(0)=\mathrm{f}^{\prime}(0)\), and \(\mathrm{p}^{\prime \prime}(0)=\) f' \((0)\).
Let \(\mathrm{a}>0, \mathrm{~b}>0\), and \(\mathrm{f}\) a continuous strictly increasing function with \(\mathrm{f}(0)=0\). Prove that \(a b \leq \int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x\) Prove, moreover, that equality occurs if and on ly if \(\mathrm{b}=\mathrm{f}(\mathrm{a})\).
Evaluate the integrals (i) \(\int_{0}^{b} \frac{x d x}{(1+x)^{3}}\) (ii) \(\int_{0}^{b} \frac{x^{2} d x}{(1+x)^{4}}\) and show that they converge to finite limits as \(\mathrm{b} \rightarrow \infty\)
Evaluate the following limits: (i) \(\lim _{n \rightarrow \infty}\left(\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\ldots .+\frac{1}{n}\right)\) (ii) \(\lim _{n \rightarrow \infty} \frac{2^{k}+4^{k}+6^{k}+. .+(2 n)^{k}}{n^{k+1}}, k \neq-1\) (iii) \(\lim _{n \rightarrow \infty} \frac{3}{n}\left[1+\sqrt{\frac{n}{n+3}}+\sqrt{\frac{n}{n+6}}+\sqrt{\frac{n}{n+9}}+\ldots . .\right.\) \(\left.\ldots+\sqrt{\frac{n}{n+3(n-1)}}\right]\) (iv) \(\lim _{n \rightarrow x} \frac{n^{2}}{\left(n^{2}+1\right)^{3 / 2}}+\frac{n^{2}}{\left(n^{2}+2^{2}\right)^{3 / 2}}+\) \(\ldots+\frac{\mathrm{n}^{2}}{\left[\mathrm{n}^{2}+(\mathrm{n}-1)^{2}\right]^{3 / 2}}\)
Solve the following equations: (i) \(\int_{\sqrt{2}}^{x} \frac{d x}{x \sqrt{x^{2}-1}}=\frac{\pi}{12}\) (ii) \(\int_{\ln 2}^{x} \frac{d x}{\sqrt{e^{x}-1}}=\frac{\pi}{6}\) (iii) \(\int_{-1}^{x}\left(8 t^{2}+\frac{28}{3} t+4\right) d t=\frac{1.5 x+1}{\log _{x+1} \sqrt{x+1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.