Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find an antiderivative \(\mathrm{F}\) of \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \sin \left(\mathrm{x}^{2}\right)\) such that \(\mathrm{F}(1)=0\).

Short Answer

Expert verified
Question: Find the antiderivative \(F(x)\) of the function \(f(x) = x^2\sin(x^2)\), such that \(F(1) = 0\). Answer: \(F(x) = -\frac{1}{2}\cos(x^2) + \frac{1}{2}\cos(1)\).

Step by step solution

01

Integrate the function \(f(x)\)

To find the antiderivative \(F(x)\), we need to integrate the function \(f(x)\). In this case, we will use the technique of substitution. Let \(u = x^2\). Then, \(\frac{du}{dx} = 2x\), which means \(dx = \frac{du}{2x}\). The integral is now: $$\int x^2 \sin(u) \cdot \frac{du}{2x}$$ The \(x\) terms cancel out, leaving us with: $$\frac{1}{2} \int \sin(u) du$$ Now, we integrate the sine function: $$\frac{1}{2} (-\cos(u)) + C$$ We can now substitute back the \(u\): $$F(x) = -\frac{1}{2}\cos(x^2) + C$$
02

Find the value of the constant C

We are given the condition that \(F(1) = 0\). We can now use this information to find the value of the constant C: $$F(1) = 0$$ $$0 = -\frac{1}{2}\cos(1^2) + C$$ Therefore: $$C = \frac{1}{2}\cos(1)$$
03

Write the final antiderivative with the constant C

Now that we have found the value of C, we can write the final antiderivative: $$F(x) = -\frac{1}{2}\cos(x^2) + \frac{1}{2}\cos(1)$$ So, the antiderivative \(F(x)\) is: $$F(x) = -\frac{1}{2}\cos(x^2) + \frac{1}{2}\cos(1)$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A function \(\mathrm{f}\) is defined for all real \(\mathrm{x}\) by the formula \(\mathrm{f}(\mathrm{x})=3+\int_{0}^{\mathrm{x}} \frac{1+\sin \mathrm{t}}{2+\mathrm{t}^{2}} \mathrm{dt}\). Without attempting to evaluate this integral, find a quadratic polynomial \(\mathrm{p}(\mathrm{x})=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\) such that \(\mathrm{p}(0)=\mathrm{f}(0), \mathrm{p}^{\prime}(0)=\mathrm{f}^{\prime}(0)\), and \(\mathrm{p}^{\prime \prime}(0)=\) f' \((0)\).

Let \(\mathrm{a}>0, \mathrm{~b}>0\), and \(\mathrm{f}\) a continuous strictly increasing function with \(\mathrm{f}(0)=0\). Prove that \(a b \leq \int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x\) Prove, moreover, that equality occurs if and on ly if \(\mathrm{b}=\mathrm{f}(\mathrm{a})\).

Evaluate the integrals (i) \(\int_{0}^{b} \frac{x d x}{(1+x)^{3}}\) (ii) \(\int_{0}^{b} \frac{x^{2} d x}{(1+x)^{4}}\) and show that they converge to finite limits as \(\mathrm{b} \rightarrow \infty\)

Evaluate the following limits: (i) \(\lim _{n \rightarrow \infty}\left(\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\ldots .+\frac{1}{n}\right)\) (ii) \(\lim _{n \rightarrow \infty} \frac{2^{k}+4^{k}+6^{k}+. .+(2 n)^{k}}{n^{k+1}}, k \neq-1\) (iii) \(\lim _{n \rightarrow \infty} \frac{3}{n}\left[1+\sqrt{\frac{n}{n+3}}+\sqrt{\frac{n}{n+6}}+\sqrt{\frac{n}{n+9}}+\ldots . .\right.\) \(\left.\ldots+\sqrt{\frac{n}{n+3(n-1)}}\right]\) (iv) \(\lim _{n \rightarrow x} \frac{n^{2}}{\left(n^{2}+1\right)^{3 / 2}}+\frac{n^{2}}{\left(n^{2}+2^{2}\right)^{3 / 2}}+\) \(\ldots+\frac{\mathrm{n}^{2}}{\left[\mathrm{n}^{2}+(\mathrm{n}-1)^{2}\right]^{3 / 2}}\)

Solve the following equations: (i) \(\int_{\sqrt{2}}^{x} \frac{d x}{x \sqrt{x^{2}-1}}=\frac{\pi}{12}\) (ii) \(\int_{\ln 2}^{x} \frac{d x}{\sqrt{e^{x}-1}}=\frac{\pi}{6}\) (iii) \(\int_{-1}^{x}\left(8 t^{2}+\frac{28}{3} t+4\right) d t=\frac{1.5 x+1}{\log _{x+1} \sqrt{x+1}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free