Chapter 2: Problem 8
Show that for each integer \(\mathrm{m}>1\), \(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}<\ln m<1+\frac{1}{2}+\ldots+\frac{1}{m-1}\)
Chapter 2: Problem 8
Show that for each integer \(\mathrm{m}>1\), \(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}<\ln m<1+\frac{1}{2}+\ldots+\frac{1}{m-1}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{dx}=\int_{0}^{1} \sqrt{-\ell \text { ny }}\) dy by interpreting th -
For each \(x>0 .\) let \(G(x)\) \(=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{xt}} \mathrm{dt}\). Prove that \(\mathrm{xG}(\mathrm{x})=1\) for each \(\mathrm{x}>0\).
4\. Prove that (i) \(\frac{2 \pi}{13}<\int_{0}^{2 \pi} \frac{\mathrm{dx}}{10+3 \cos \mathrm{x}}<\frac{2 \pi}{7}\) (ii) \(0<\int_{0}^{\pi / 4} x \sqrt{\tan x}<\frac{\pi^{2}}{32}\) (iii) \(\frac{1}{2}<\int_{\pi / 4}^{\pi / 2} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}<\frac{1}{\sqrt{2}}\) (iv) \(\left|\int_{1}^{4} \frac{\sin x}{x} d x\right| \leq \frac{3}{2}\).
Showthat \(\int_{0}^{\pi} \frac{\ell \mathrm{n}(1+\mathrm{a} \cos \mathrm{x})}{\cos \mathrm{x}} \mathrm{dx}=\pi \sin ^{-1} \mathrm{a},(|\mathrm{a}|<1)\)
Evaluate the following integrals: (i) \(\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}} d x\) (ii) \(\int_{-\infty}^{\infty} \frac{1}{e^{x}+e^{-x}} d x\) (iii) \(\int_{3}^{5} \frac{x^{2} d x}{\sqrt{(x-3)(5-x)}}\) (iv) \(\int_{-1}^{1} \frac{d x}{(2-x) \sqrt{1-x^{2}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.