Chapter 2: Problem 8
A function \(\mathrm{f}\) is defined for all real \(\mathrm{x}\) by the formula \(\mathrm{f}(\mathrm{x})=3+\int_{0}^{\mathrm{x}} \frac{1+\sin \mathrm{t}}{2+\mathrm{t}^{2}} \mathrm{dt}\). Without attempting to evaluate this integral, find a quadratic polynomial \(\mathrm{p}(\mathrm{x})=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\) such that \(\mathrm{p}(0)=\mathrm{f}(0), \mathrm{p}^{\prime}(0)=\mathrm{f}^{\prime}(0)\), and \(\mathrm{p}^{\prime \prime}(0)=\) f' \((0)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.