Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove that (i) \(\int_{1}^{2} \frac{d x}{x^{3}+3 x+1}<\frac{1}{5}\) (ii) \(3 \sqrt{23}<\int_{2}^{5} \sqrt{3 \mathrm{x}^{3}-1} \mathrm{dx}<10 \sqrt{15}-8 \sqrt{6} / 5\) (iii) \(2<\int_{0}^{4} \frac{d x}{1+\sin ^{2} x}<4\) (iv) \(\frac{\pi}{2}<\int_{0}^{\pi / 2} \frac{\mathrm{d} \theta}{\sqrt{1-\mathrm{k}^{2} \sin ^{2} \theta}}<\frac{\pi}{2 \sqrt{1-\mathrm{k}^{2}}}\left(0<\mathrm{k}^{2}<1\right)\).

Short Answer

Expert verified
Answer: The upper bound is \(\frac{1}{2}\). 2. In the second inequality, between which two values does the integral of \(\sqrt{3x^3 - 1}\) lie in the interval [2,5]? Answer: The integral lies between \(3\sqrt{23}\) and \(10\sqrt{15} - \frac{8\sqrt{6}}{5}\). 3. In the third inequality, what is the upper bound of the function \(\frac{1}{1+\sin^2 x}\) in the interval [0,4]? Answer: The upper bound is 4. 4. In the fourth inequality, which values did we obtain for the lower and upper limits of the integral \(\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin^2\theta}} d\theta\)? Answer: The lower limit is \(\frac{\pi}{2}\) and the upper limit is \(\infty\).

Step by step solution

01

Identify function and interval

We need to calculate the integral of \(\frac{1}{x^{3}+3x+1}\) between the interval [1,2].
02

Find an upper bound for the function

Observe that the denominator is a cubic polynomial. To find an upper bound of \(\frac{1}{x^3 + 3x + 1}\), we can find the minimum value in the interval. Notice that for \(x \geq 1\), \(x^3 + 3x + 1 \geq x^3 + 1 \geq 2\). Taking reciprocal, \(\frac{1}{x^3 + 3x + 1} \leq \frac{1}{2}\).
03

Use the upper bound to find an estimate for the integral

We have \(\frac{1}{x^3 + 3x + 1} \leq \frac{1}{2}\) in the interval \([1, 2]\). Therefore, \(\int_{1}^{2} \frac{1}{x^3 + 3x + 1} dx \leq \int_{1}^{2} \frac{1}{2} dx = \frac{1}{2} (2-1) = \frac{1}{2}\). Thus, the given integral is indeed less than \(\frac{1}{5}\), as required. (ii)
04

Identify function and interval

We need to calculate the integral of \(\sqrt{3x^3 - 1}\) between the interval [2,5].
05

Define upper and lower bounds for the function

For the lower bound, in the interval \([2,5]\), note that \(3x^3 - 1 \geq x^3\). Thus, \(\sqrt{3x^3 - 1} \geq \sqrt{x^3} = x\). Integrating both sides, we have \(\int_{2}^{5} \sqrt{3x^3 - 1} dx \geq \int_{2}^{5} x dx\), which evaluates to \(|\frac{1}{2}x^2|\) between 2 and 5, giving \(3\sqrt{23}\). For the upper bound, note that \(3x^3 - 1 < 3x^3\). Thus, \(\sqrt{3x^3 - 1} < \sqrt{3x^3} = x \sqrt{3}\). Integrating both sides, we have \(\int_{2}^{5} \sqrt{3x^3 - 1} dx < \int_{2}^{5} x\sqrt{3} dx\), which evaluates to \(|\frac{1}{2}x^2 \sqrt{3}|\) between 2 and 5, giving \(10\sqrt{15} - \frac{8\sqrt{6}}{5}\). Therefore, \(3\sqrt{23} < \int_{2}^{5}\sqrt{3x^3-1}dx < 10\sqrt{15} -\frac{8\sqrt{6}}{5}\). (iii)
06

Identify function and interval

We need to calculate the integral of \(\frac{1}{1+\sin^2 x}\) between the interval [0,4].
07

Define upper and lower bounds for the function

Note that \(\sin^2 x \leq 1\), which implies \(\frac{1}{1+\sin^2 x} \geq \frac{1}{2}\). Integrating between [0,4], we have \(\int_{0}^{4}\frac{1}{1+\sin^2 x}dx \geq \int_{0}^{4}\frac{1}{2}dx = \frac{1}{2}(4-0)= 2\). On the other hand, \(\sin^2 x \geq 0\), which implies \(\frac{1}{1+\sin^2 x} \leq 1\). Integrating between [0,4], we have \(\int_{0}^{4}\frac{1}{1+\sin^2 x}dx \leq \int_{0}^{4}1 dx = 4\). Therefore, \(2 < \int_{0}^{4}\frac{1}{1 + \sin^2 x}dx < 4\). (iv)
08

Identify function and interval with parameter

We need to calculate the integral of \(\frac{1}{\sqrt{1-k^2\sin^2\theta}}\) between the interval [0,\(\frac{\pi}{2}\)] and 0<k^2<1.
09

Define upper and lower bounds for the function given the parameter

Since \(0 < k^2 < 1\), we have \(0 < k^2\sin^2\theta < \sin^2\theta\). Thus, \(1 < \frac{1}{\sqrt{1-k^2\sin^2\theta}} \leq \frac{1}{\sqrt{1-\sin^2\theta}} = \frac{1}{\cos\theta}\).
10

Find lower and upper limits of the integral

With the given bounds, we integrate between [0,\(\frac{\pi}{2}\)]: Lower bound: \(\int_{0}^{\frac{\pi}{2}}1 d\theta = \theta \Big |_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}\) Upper bound: \(\int_{0}^{\frac{\pi}{2}}\frac{1}{\cos\theta}d\theta = \int_{0}^{\frac{\pi}{2}}\sec\theta d\theta = \ln|(\sec\theta + \tan\theta)|\Big |_{0}^{\frac{\pi}{2}} = \ln|1 + \infty| - \ln|1|= \infty\) Hence, it follows that \(\frac{\pi}{2} < \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^2\sin^2\theta}} d\theta < \infty\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Evaluate \(\int_{0}^{\pi / 2} \ln (1+\cos \theta \cos x) \frac{d x}{\cos x}\)

If \(\mathrm{p}, \mathrm{q}\) are positive integers, show that \(\int_{0}^{\pi} \cos p x \sin q x d x\) \(=\left\\{\begin{array}{l}2 q /\left(q^{2}-p^{2}\right), \text { if }(q-p) \text { is odd } \\ 0, & \text { if }(q-p) \text { is even }\end{array}\right.\)

4\. Prove that (i) \(\frac{2 \pi}{13}<\int_{0}^{2 \pi} \frac{\mathrm{dx}}{10+3 \cos \mathrm{x}}<\frac{2 \pi}{7}\) (ii) \(0<\int_{0}^{\pi / 4} x \sqrt{\tan x}<\frac{\pi^{2}}{32}\) (iii) \(\frac{1}{2}<\int_{\pi / 4}^{\pi / 2} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}<\frac{1}{\sqrt{2}}\) (iv) \(\left|\int_{1}^{4} \frac{\sin x}{x} d x\right| \leq \frac{3}{2}\).

Let p be a polynomial of degree atmost 4 such that \(\mathrm{p}(-1)=\mathrm{p}(1)=0\) and \(\mathrm{p}(0)=1\). If \(\mathrm{p}(\mathrm{x}) \leq 1\) for \(x \in[-1,1]\), find the largest value of \(\int^{1} p(x) d x\)

Here is an argument that \(\ln 3\) equals \(\infty-\infty\). Where does the argument go wrong ? Give reasons for your answer. \(\ln 3=\ln 1-\ln \frac{1}{3}\) \(=\lim _{b \rightarrow \infty} \ln \left(\frac{b-2}{b}\right)-\ln \frac{1}{3}\) \(=\lim _{b \rightarrow x}\left[\ln \frac{x-2}{x}\right]_{3}^{b}\) \(=\lim _{b \rightarrow \infty}[\ln (x-2)-\ln x]_{3}^{b}\) \(=\lim _{b \rightarrow \infty} \int_{3}^{b}\left(\frac{1}{x-2}-\frac{1}{x}\right) d x\) \(=\int_{3}^{\infty}\left(\frac{1}{x-2}-\frac{1}{x}\right) d x\) \(=\int_{3}^{\infty} \frac{1}{x-2} d x-\int_{3}^{\infty} \frac{1}{x} d x\) \(=\lim _{b \rightarrow \infty}[\ln (x-2)]_{3}^{b}-\lim _{b \rightarrow \infty}[\ln x]_{3}^{b}\) \(=\infty-\infty .\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free