Chapter 2: Problem 7
Find \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\) if \(\mathrm{y}=\int_{\mathrm{x}}^{13} \frac{\mathrm{t}^{3} \sin 2 \mathrm{t}}{\sqrt{1+3 \mathrm{t}}} \mathrm{dt}\)
Chapter 2: Problem 7
Find \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\) if \(\mathrm{y}=\int_{\mathrm{x}}^{13} \frac{\mathrm{t}^{3} \sin 2 \mathrm{t}}{\sqrt{1+3 \mathrm{t}}} \mathrm{dt}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\int_{0}^{2} f(x) d x\), where
\(f(x)=\left\\{\begin{array}{c}\frac{1}{\sqrt[4]{x^{3}}} \quad \text { for } 0
\leq x \leq 1 \\ \frac{1}{\sqrt[4]{(x-1)^{3}}}\end{array}\right.\) for \(1
Evaluate the following integrals: (i) \(\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}} d x\) (ii) \(\int_{-\infty}^{\infty} \frac{1}{e^{x}+e^{-x}} d x\) (iii) \(\int_{3}^{5} \frac{x^{2} d x}{\sqrt{(x-3)(5-x)}}\) (iv) \(\int_{-1}^{1} \frac{d x}{(2-x) \sqrt{1-x^{2}}}\)
Sketch the region whose area is \(\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}\), and use your sketch to show that \(\int_{0}^{\infty} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=\int_{0}^{1} \sqrt{\frac{1-\mathrm{y}}{\mathrm{y}}} \mathrm{dy}\)
It can be proved that \(\int_{0}^{\infty} \frac{x^{n-1}}{1+x} d x=\pi \operatorname{cosec} n \pi\) for \(0<\mathrm{n}<1\). Verify that this equation is correct for \(\mathrm{n}=1 / 2\)
Show that \(\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{dx}=\int_{0}^{1} \sqrt{-\ell \text { ny }}\) dy by interpreting th -
What do you think about this solution?
We value your feedback to improve our textbook solutions.