Chapter 2: Problem 6
Suppose f is continuous, \(f(0)=0, f(1)=1, f^{\prime}(x)>0\), and \(\int_{0}^{1} f(x) d x=\frac{1}{3}\). Find the value of the integral \(\int_{0}^{1} \mathrm{f}^{-1}(\mathrm{y}) \mathrm{dy}\)
Chapter 2: Problem 6
Suppose f is continuous, \(f(0)=0, f(1)=1, f^{\prime}(x)>0\), and \(\int_{0}^{1} f(x) d x=\frac{1}{3}\). Find the value of the integral \(\int_{0}^{1} \mathrm{f}^{-1}(\mathrm{y}) \mathrm{dy}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that (i) \(0<\int_{0}^{2} \frac{x \mathrm{dx}}{16+x^{3}}<\frac{1}{6}\) (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}^{4}}} \geq \frac{\pi}{4}\) (iv) \(\int_{0}^{1} \frac{d x}{4+x^{3}}>\ln \frac{5}{4}\) (iii) \(\int_{1}^{100} \mathrm{e}^{-\mathrm{x}} \sin ^{2} \mathrm{x} \mathrm{dx}<1\)
Prove that (i) \(\int_{1}^{2} \frac{d x}{x^{3}+3 x+1}<\frac{1}{5}\) (ii) \(3 \sqrt{23}<\int_{2}^{5} \sqrt{3 \mathrm{x}^{3}-1} \mathrm{dx}<10 \sqrt{15}-8 \sqrt{6} / 5\) (iii) \(2<\int_{0}^{4} \frac{d x}{1+\sin ^{2} x}<4\) (iv) \(\frac{\pi}{2}<\int_{0}^{\pi / 2} \frac{\mathrm{d} \theta}{\sqrt{1-\mathrm{k}^{2} \sin ^{2} \theta}}<\frac{\pi}{2 \sqrt{1-\mathrm{k}^{2}}}\left(0<\mathrm{k}^{2}<1\right)\).
If \(\mathrm{p}, \mathrm{q}\) are positive integers, show that \(\int_{0}^{\pi} \cos p x \sin q x d x\) \(=\left\\{\begin{array}{l}2 q /\left(q^{2}-p^{2}\right), \text { if }(q-p) \text { is odd } \\ 0, & \text { if }(q-p) \text { is even }\end{array}\right.\)
Evaluate \(\int_{0}^{1}\left(\sqrt[3]{1-x^{7}}-\sqrt[7]{1-x^{3}}\right) d x\)
One of the numbers \(\pi, \pi / 2,35 \pi / 128,1-\pi\) is the correct value of the integral \(\int_{0}^{\pi} \sin ^{8} x d x\). Use the graph of \(\mathrm{y}=\sin ^{8} \mathrm{x}\) and a logical process of elimination to find the correct value.
What do you think about this solution?
We value your feedback to improve our textbook solutions.