Chapter 2: Problem 6
Prove that \(\int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{x} \sin ^{\mathrm{m}} \mathrm{xd} \mathrm{x}=2^{-\mathrm{m}} \int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{xdx} .\)
Chapter 2: Problem 6
Prove that \(\int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{x} \sin ^{\mathrm{m}} \mathrm{xd} \mathrm{x}=2^{-\mathrm{m}} \int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{xdx} .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}\) be a function. Show that there is a parabola \(\mathrm{y}=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\) that passes through the three points \((-\mathrm{h}, \mathrm{f}(-\mathrm{h})),(0, \mathrm{f}(0))\), and \((\mathrm{h}, \mathrm{f}(\mathrm{h}))\).
Determine the signs of the integrals without evaluating them : (a) \(\int_{-1}^{2} x^{3} d x\) (b) \(\int_{0}^{2 \pi \sin x}{x} d x\) (c) \(\int_{0}^{\pi} x \cos x d x\).
Evaluate the following integrals: (i) \(\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{4} x d x\) (ii) \(\int_{0}^{\frac{\pi}{2}} \sin ^{7} x \cos ^{4} x d x\) (iii) \(\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{5} x d x\) (iv) \(\int_{0}^{\pi} \sin ^{6} \frac{x}{2} \cos ^{8} \frac{x}{2} d x\)
Prove that (i) \(\int_{1}^{2} \frac{d x}{(x+1) \sqrt{x^{2}-1}}=\frac{1}{\sqrt{3}}\). (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{(1+x)(2+x) \sqrt{x(1-x)}}=\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{6}}\right)\).
Let \(\mathrm{a}>0, \mathrm{~b}>0\), and \(\mathrm{f}\) a continuous strictly increasing function with \(\mathrm{f}(0)=0\). Prove that \(a b \leq \int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x\) Prove, moreover, that equality occurs if and on ly if \(\mathrm{b}=\mathrm{f}(\mathrm{a})\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.