Chapter 2: Problem 6
Given \(\int_{0}^{1} \frac{\sin t}{1+t} \mathrm{dt}=\alpha\), find \(\int_{4 \pi-2}^{4 \pi} \frac{\sin \frac{\mathrm{t}}{2}}{4 \pi+2-\mathrm{t}} \mathrm{dt}\) in terms of \(\alpha\).
Chapter 2: Problem 6
Given \(\int_{0}^{1} \frac{\sin t}{1+t} \mathrm{dt}=\alpha\), find \(\int_{4 \pi-2}^{4 \pi} \frac{\sin \frac{\mathrm{t}}{2}}{4 \pi+2-\mathrm{t}} \mathrm{dt}\) in terms of \(\alpha\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}(\mathrm{x})=\mathrm{A} x^{2}+\mathrm{Bx}+\mathrm{C}\). Show that \(\int_{-\mathrm{h}}^{\mathrm{h}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\frac{\mathrm{h}}{3}[\mathrm{f}(-\mathrm{h})+4 \mathrm{f}(0)+\mathrm{f}(\mathrm{h})]\)
Find \(\int_{0}^{2} f(x) d x\), where
\(f(x)=\left\\{\begin{array}{l}\frac{1}{\sqrt[4]{x^{3}}} \quad \text { for } 0
\leq x \leq 1 \\ \frac{1}{\sqrt[4]{(x-1)^{3}}} & \text { for }
1
\(\sqrt{1}+x\) Prove that, if \(\mathrm{n}>1\) (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{n} x d x\), (ii) \(0<\int_{0}^{\pi / 4} \tan ^{n+1} x d x<\int_{0}^{\pi / 4} \tan ^{n} x d x\). (iii) \(0.5<\int_{0}^{1 / 2} \frac{\mathrm{dx}}{\sqrt{\left(1-\mathrm{x}^{2 \mathrm{a}}\right)}}<0.524\).
Prove the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
Evaluate the integrals (i) \(\int_{0}^{b} \frac{x d x}{(1+x)^{3}}\) (ii) \(\int_{0}^{b} \frac{x^{2} d x}{(1+x)^{4}}\) and show that they converge to finite limits as \(\mathrm{b} \rightarrow \infty\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.