Chapter 2: Problem 5
Find the derivative of \(\mathrm{y}=\int_{1-3 \times}^{1} \frac{\mathrm{u}^{3}}{1+\mathrm{u}^{2}} \mathrm{du}\).
Chapter 2: Problem 5
Find the derivative of \(\mathrm{y}=\int_{1-3 \times}^{1} \frac{\mathrm{u}^{3}}{1+\mathrm{u}^{2}} \mathrm{du}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIf a is positive and \(\mathrm{I}=\int_{-1}^{1} \frac{\mathrm{dx}}{\sqrt{1-2 \mathrm{ax}+\mathrm{a}^{2}}}\) then show that \(\mathrm{I}=2 \mathrm{ifa}<1\) and \(\mathrm{I}=\frac{2}{\mathrm{a}}\) if \(\mathrm{a}>1\).
Find the sum of the series \(\frac{x^{2}}{1.2}-\frac{x^{3}}{2.3}+\frac{x^{4}}{3.4}-\ldots+(-1)^{n+1} \frac{x^{n+1}}{n(n+1)}+\ldots,|x|<1\)
Suppose f is continuous, \(f(0)=0, f(1)=1, f^{\prime}(x)>0\), and \(\int_{0}^{1} f(x) d x=\frac{1}{3}\). Find the value of the integral \(\int_{0}^{1} \mathrm{f}^{-1}(\mathrm{y}) \mathrm{dy}\)
Solve the following equations: (i) \(\int_{\sqrt{2}}^{x} \frac{d x}{x \sqrt{x^{2}-1}}=\frac{\pi}{12}\) (ii) \(\int_{\ln 2}^{x} \frac{d x}{\sqrt{e^{x}-1}}=\frac{\pi}{6}\) (iii) \(\int_{-1}^{x}\left(8 t^{2}+\frac{28}{3} t+4\right) d t=\frac{1.5 x+1}{\log _{x+1} \sqrt{x+1}}\)
Show that \(\int_{0}^{\infty} \sin \theta \mathrm{d} \theta\) and \(\int_{0}^{\infty} \cos \theta \mathrm{d} \theta\) are indeterminate.
What do you think about this solution?
We value your feedback to improve our textbook solutions.