Chapter 2: Problem 5
Evaluate \(\int_{0}^{\pi / 2} \ln (1+\cos \theta \cos x) \frac{d x}{\cos x}\)
Chapter 2: Problem 5
Evaluate \(\int_{0}^{\pi / 2} \ln (1+\cos \theta \cos x) \frac{d x}{\cos x}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{P}_{\mathrm{n}}\) denote the polynomial of degree \(\mathrm{n}\) given by \(\mathrm{P}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}+\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{x}^{3}}{3}+\ldots .+\frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{k}}}{\mathrm{k}}\). Then, for every \(x<1\) and every \(n \geq 1\), prove that \(-\ln (1-x)=P_{n}(x)+\int_{0}^{x} \frac{u^{n}}{1-u} d u\)
Solve the following equations: (i) \(\int_{\sqrt{2}}^{x} \frac{d x}{x \sqrt{x^{2}-1}}=\frac{\pi}{12}\) (ii) \(\int_{\ln 2}^{x} \frac{d x}{\sqrt{e^{x}-1}}=\frac{\pi}{6}\) (iii) \(\int_{-1}^{x}\left(8 t^{2}+\frac{28}{3} t+4\right) d t=\frac{1.5 x+1}{\log _{x+1} \sqrt{x+1}}\)
(a) Make a conjecture about the value of the limit \(\lim _{k \rightarrow 0} \int_{1}^{b} t^{k-1} d t(b>0)\) (b) Check your conjecture by evaluating the integral and finding the limit. [Hint: Interpret the limit as the definition of the derivative of an exponential function]
Show that for each integer \(\mathrm{m}>1\), \(\ln 1+\ln 2+\ldots+\ln (m-1)
Show that \(\int_{0}^{\infty} x^{-\mathrm{rx}} \sin a x \mathrm{~d} x\) equals \(a /\left(a^{2}+r^{2}\right)\), where \(r>0\) and a are constant.
What do you think about this solution?
We value your feedback to improve our textbook solutions.