Chapter 2: Problem 5
Evaluate \(\int_{0}^{a}\left(a^{2}-x^{2}\right)^{5 / 2} d x\)
Chapter 2: Problem 5
Evaluate \(\int_{0}^{a}\left(a^{2}-x^{2}\right)^{5 / 2} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that \(\lim _{\lambda \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+\lambda x^{4}} d x=0\).
Let p be a polynomial of degree atmost 4 such that \(\mathrm{p}(-1)=\mathrm{p}(1)=0\) and \(\mathrm{p}(0)=1\). If \(\mathrm{p}(\mathrm{x}) \leq 1\) for \(x \in[-1,1]\), find the largest value of \(\int^{1} p(x) d x\)
Evaluate the following limits: (i) \(\lim _{n \rightarrow x} \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots .+\frac{1}{4 n}\) (ii) \(\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{n^{2}}{(n+1)^{3}}+\frac{n^{2}}{(n+2)^{3}} \ldots .+\frac{1}{8 n}\right]\) (iii) \(\lim _{n \rightarrow \infty}\left[\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\frac{n+3}{n^{2}+3^{2}}+\ldots . .+\frac{3}{5 n}\right]\)
Prove that when a is large the sum to infinity of the series \(\frac{1}{a^{2}}+\frac{1}{a^{2}+1^{2}}+\frac{1}{a^{2}+2^{2}}+\ldots\) is \(\frac{1}{2} \pi / a\), approximately.
Prove that (i) \(\frac{99 \pi}{400}<\int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x<\frac{99 \pi}{200}\) (ii) \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\) (iii) \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\) (iv) \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.