Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If oil leaks from a tank at a rate of \(\mathrm{r}(\mathrm{t})\) litres per minute at time \(t\), what does \(\int_{0}^{120} r(t) d t\) represent?

Short Answer

Expert verified
Answer: The expression \(\int_{0}^{120} r(t) dt\) represents the total amount of oil leaked from the tank over a period of 120 minutes (2 hours), given the rate of leakage \(r(t)\) litres per minute.

Step by step solution

01

Understanding the integral

Recall that integrating a function \(f(t)\) with respect to \(t\) between the limits \(a\) and \(b\) represents finding the signed area under the curve of \(f(t)\) between the two points \(t=a\) and \(t=b\). In this scenario, given the rate of oil leakage \(r(t)\), the integral \(\int_{0}^{120} r(t) dt\) represents the area under the curve of the leakage rate between the time \(t=0\) and \(t=120\) minutes.
02

Interpretation of the integral in the context of the given problem

Since the given function \(r(t)\) represents the rate of oil leakage per minute, by finding the area under this function's curve, we determine the total amount of oil leakage. Specifically, the expression \(\int_{0}^{120} r(t) dt\) gives us the total amount of oil that leaks from the tank within 120 minutes (2 hours).
03

Concluding remarks

In summary, the integral \(\int_{0}^{120} r(t) dt\) represents the total amount of oil leaked from the tank over a period of 120 minutes (2 hours), given the rate of leakage \(r(t)\) litres per minute.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\sqrt{1}+x\) Prove that, if \(\mathrm{n}>1\) (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{n} x d x\), (ii) \(0<\int_{0}^{\pi / 4} \tan ^{n+1} x d x<\int_{0}^{\pi / 4} \tan ^{n} x d x\). (iii) \(0.5<\int_{0}^{1 / 2} \frac{\mathrm{dx}}{\sqrt{\left(1-\mathrm{x}^{2 \mathrm{a}}\right)}}<0.524\).

Evaluate the following integrals : (i) \(\int_{0}^{1}\left(1-x^{2}\right)^{n} d x\) (ii) \(\int_{0}^{1} \frac{x^{2 n} d x}{\sqrt{1-x^{2}}}\) (iii) \(\int_{0}^{2 \mathrm{a}} \mathrm{x}^{9 / 2}(2 \mathrm{a}-\mathrm{x})^{-1 / 2} \mathrm{dx}\) (iv) \(\int_{0}^{\infty} \frac{x^{4} d x}{\left(a^{2}+x^{2}\right)^{2}}\)

Show that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)

If \(\alpha\) and \(\phi\) are positive acute angles then prove that \(\phi<\int_{0}^{p} \frac{\mathrm{dx}}{\sqrt{\left(1-\sin ^{2} \alpha \sin ^{2} \mathrm{x}\right)}}<\frac{\varphi}{\sqrt{\left(1-\sin ^{2} \alpha \sin ^{2} \varphi\right)}} .\) If \(\alpha=\phi=1 / 6 \pi\), then prove that the integral lies between \(0.523\) and \(0.541\).

\(\int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}\) may not equal \(\lim _{\mathrm{b} \rightarrow \infty} \int_{-\mathrm{b}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) Show that \(\int_{0}^{\infty} \frac{2 \mathrm{xdx}}{\mathrm{x}^{2}+1}\) diverges and hence that \(\int_{-\infty}^{\infty} \frac{2 x d x}{x^{2}+1}\) diverges. Then show that \(\lim _{b \rightarrow \infty} \int_{-b}^{b} \frac{2 x d x}{x^{2}+1}=0\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free