Chapter 2: Problem 42
If oil leaks from a tank at a rate of \(\mathrm{r}(\mathrm{t})\) litres per minute at time \(t\), what does \(\int_{0}^{120} r(t) d t\) represent?
Chapter 2: Problem 42
If oil leaks from a tank at a rate of \(\mathrm{r}(\mathrm{t})\) litres per minute at time \(t\), what does \(\int_{0}^{120} r(t) d t\) represent?
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sqrt{1}+x\) Prove that, if \(\mathrm{n}>1\) (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{n} x d x\), (ii) \(0<\int_{0}^{\pi / 4} \tan ^{n+1} x d x<\int_{0}^{\pi / 4} \tan ^{n} x d x\). (iii) \(0.5<\int_{0}^{1 / 2} \frac{\mathrm{dx}}{\sqrt{\left(1-\mathrm{x}^{2 \mathrm{a}}\right)}}<0.524\).
Evaluate the following integrals : (i) \(\int_{0}^{1}\left(1-x^{2}\right)^{n} d x\) (ii) \(\int_{0}^{1} \frac{x^{2 n} d x}{\sqrt{1-x^{2}}}\) (iii) \(\int_{0}^{2 \mathrm{a}} \mathrm{x}^{9 / 2}(2 \mathrm{a}-\mathrm{x})^{-1 / 2} \mathrm{dx}\) (iv) \(\int_{0}^{\infty} \frac{x^{4} d x}{\left(a^{2}+x^{2}\right)^{2}}\)
Show that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)
If \(\alpha\) and \(\phi\) are positive acute angles then prove that \(\phi<\int_{0}^{p} \frac{\mathrm{dx}}{\sqrt{\left(1-\sin ^{2} \alpha \sin ^{2} \mathrm{x}\right)}}<\frac{\varphi}{\sqrt{\left(1-\sin ^{2} \alpha \sin ^{2} \varphi\right)}} .\) If \(\alpha=\phi=1 / 6 \pi\), then prove that the integral lies between \(0.523\) and \(0.541\).
\(\int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}\) may not equal \(\lim _{\mathrm{b} \rightarrow \infty} \int_{-\mathrm{b}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) Show that \(\int_{0}^{\infty} \frac{2 \mathrm{xdx}}{\mathrm{x}^{2}+1}\) diverges and hence that \(\int_{-\infty}^{\infty} \frac{2 x d x}{x^{2}+1}\) diverges. Then show that \(\lim _{b \rightarrow \infty} \int_{-b}^{b} \frac{2 x d x}{x^{2}+1}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.