Chapter 2: Problem 4
Suppose that \(f(1)=2, f(4)=7, f^{\prime}(1)=5, f^{\prime}(4)=3\) and \(\mathrm{f}^{\prime \prime}\) is continuous, Find the value of \(\int_{1}^{4} x f^{\prime \prime}(x) d x\)
Chapter 2: Problem 4
Suppose that \(f(1)=2, f(4)=7, f^{\prime}(1)=5, f^{\prime}(4)=3\) and \(\mathrm{f}^{\prime \prime}\) is continuous, Find the value of \(\int_{1}^{4} x f^{\prime \prime}(x) d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\int_{0}^{\infty} x^{-\mathrm{rx}} \sin a x \mathrm{~d} x\) equals \(a /\left(a^{2}+r^{2}\right)\), where \(r>0\) and a are constant.
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
Prove that \(\int_{a}^{b} \frac{d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\pi\), \(\int_{a}^{b} \frac{x d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\frac{1}{2} \pi(a+b)\) (i) by means of the substitution \(\mathrm{x}=\mathrm{a}+(\mathrm{b}-\mathrm{a}) \mathrm{t}^{2}\), (ii) bymeans of the substitution \((\mathrm{b}-\mathrm{x})(\mathrm{x}-\mathrm{a})=\mathrm{t}\), and (iii) by means of the substitution \(x=a \cos ^{2} t\) \(+b \sin ^{2} t\)
Prove that (i) \(\frac{99 \pi}{400}<\int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x<\frac{99 \pi}{200}\) (ii) \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\) (iii) \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\) (iv) \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\).
Using Schwartz-Bunyakovsky inequality with \(\mathrm{f}^{2}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}}, \mathrm{~g}^{2}(\mathrm{x})=1+\mathrm{x}^{2}\), show that \(\int_{0}^{1} \frac{1}{1+x^{2}} d x>\frac{3}{4}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.