Chapter 2: Problem 4
If \(f^{\prime}\) is continuous on \([a, b]\), show that \(2 \int_{a}^{b} f(x) f^{\prime}(x) d x=[f(b)]^{2}-[f(a)]^{2}\)
Chapter 2: Problem 4
If \(f^{\prime}\) is continuous on \([a, b]\), show that \(2 \int_{a}^{b} f(x) f^{\prime}(x) d x=[f(b)]^{2}-[f(a)]^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\int_{0}^{1} \frac{\ell n\left(1-a^{2} x^{2}\right)}{x^{2} \sqrt{\left(1-x^{2}\right)}} d x\) \(=\pi\left[\sqrt{1-a^{2}}-1\right],\left(a^{2}<1\right)\)
Prove that (i) \(\int_{1}^{2} \frac{d x}{(x+1) \sqrt{x^{2}-1}}=\frac{1}{\sqrt{3}}\). (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{(1+x)(2+x) \sqrt{x(1-x)}}=\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{6}}\right)\).
Prove the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
Show that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)
Let \(\mathrm{f}\) be a function. Show that there is a parabola \(\mathrm{y}=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\) that passes through the three points \((-\mathrm{h}, \mathrm{f}(-\mathrm{h})),(0, \mathrm{f}(0))\), and \((\mathrm{h}, \mathrm{f}(\mathrm{h}))\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.