Chapter 2: Problem 36
Find the mean value of the velocity of a body falling freely from the altitude \(\mathrm{h}\) with the initial velocity \(\mathrm{v}_{0}\)
Chapter 2: Problem 36
Find the mean value of the velocity of a body falling freely from the altitude \(\mathrm{h}\) with the initial velocity \(\mathrm{v}_{0}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that (a) \(\pi=\lim _{n \rightarrow \infty} \frac{4}{n^{2}}\left(\sqrt{n^{2}-1}+\sqrt{n^{2}-2^{2}}+\ldots+\sqrt{n^{2}-n^{2}}\right)\). (b) \(\int_{1}^{3}\left(x^{2}+1\right) d x=\lim _{n \rightarrow \infty} \frac{4}{n^{3}} \sum_{i=1}^{n}\left(n^{2}+2 i n+2 i^{2}\right)\).
Let \(\mathrm{F}(\mathrm{x})=\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\). Determine a formula for computing \(\mathrm{F}(\mathrm{x})\) for all real \(\mathrm{x}\) if \(\mathrm{f}\) is defined as follows: (a) \(\mathrm{f}(\mathrm{t})=(\mathrm{t}+\mid \mathrm{t})^{2}\) (b) \(f(t)=\left\\{\begin{array}{lll}1-t^{2} & \text { if } & |t| \leq 1 \\\ 1-|t| & \text { if } & |t|>1\end{array}\right.\) (c) \(\mathrm{f}(\mathrm{t})=\mathrm{e}^{-1}\). (d) \(\mathrm{f}(\mathrm{t})=\) the maximum of 1 and \(\mathrm{t}^{2}\).
Prove that \(\int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{x} \sin ^{\mathrm{m}} \mathrm{xd} \mathrm{x}=2^{-\mathrm{m}} \int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{xdx} .\)
Show that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)
\(\int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}\) may not equal \(\lim _{\mathrm{b} \rightarrow \infty} \int_{-\mathrm{b}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) Show that \(\int_{0}^{\infty} \frac{2 \mathrm{xdx}}{\mathrm{x}^{2}+1}\) diverges and hence that \(\int_{-\infty}^{\infty} \frac{2 x d x}{x^{2}+1}\) diverges. Then show that \(\lim _{b \rightarrow \infty} \int_{-b}^{b} \frac{2 x d x}{x^{2}+1}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.