Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the mean value of the velocity of a body falling freely from the altitude \(\mathrm{h}\) with the initial velocity \(\mathrm{v}_{0}\)

Short Answer

Expert verified
Answer: The three steps to find the mean velocity of a freely falling body are: 1. Find the time of fall from the given height (h). 2. Determine the final velocity (v_final) after falling for the calculated time. 3. Calculate the mean velocity using the formula: v_mean = (v_initial + v_final) / 2.

Step by step solution

01

Find the time of fall

Use the position equation to determine the time required for the body to fall freely: \(\Delta x = v_0t + \frac{1}{2}at^2\) Substituting the values: \(h = v_0t + \frac{1}{2}gt^2\) Now, we need to solve for 't'.
02

Determine the final velocity

After getting the time 't', we will determine the final velocity (v_final) using the velocity-time formula: \(v_{final} = v_0 + at\) Here, we have 'g' as the acceleration which is due to gravity.
03

Calculate the mean velocity

Now, we can calculate the mean velocity (v_mean) using the formula: \(\mathrm{v}_{mean}=\frac{\mathrm{v}_{initial}+\mathrm{v}_{final}}{2}\) Substitute the values of the initial and final velocities and calculate the mean velocity. Following these three steps, you will be able to find the mean velocity of a body falling freely from an altitude (h) with an initial velocity (v_0).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Prove that (a) \(\pi=\lim _{n \rightarrow \infty} \frac{4}{n^{2}}\left(\sqrt{n^{2}-1}+\sqrt{n^{2}-2^{2}}+\ldots+\sqrt{n^{2}-n^{2}}\right)\). (b) \(\int_{1}^{3}\left(x^{2}+1\right) d x=\lim _{n \rightarrow \infty} \frac{4}{n^{3}} \sum_{i=1}^{n}\left(n^{2}+2 i n+2 i^{2}\right)\).

Let \(\mathrm{F}(\mathrm{x})=\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\). Determine a formula for computing \(\mathrm{F}(\mathrm{x})\) for all real \(\mathrm{x}\) if \(\mathrm{f}\) is defined as follows: (a) \(\mathrm{f}(\mathrm{t})=(\mathrm{t}+\mid \mathrm{t})^{2}\) (b) \(f(t)=\left\\{\begin{array}{lll}1-t^{2} & \text { if } & |t| \leq 1 \\\ 1-|t| & \text { if } & |t|>1\end{array}\right.\) (c) \(\mathrm{f}(\mathrm{t})=\mathrm{e}^{-1}\). (d) \(\mathrm{f}(\mathrm{t})=\) the maximum of 1 and \(\mathrm{t}^{2}\).

Prove that \(\int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{x} \sin ^{\mathrm{m}} \mathrm{xd} \mathrm{x}=2^{-\mathrm{m}} \int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{xdx} .\)

Show that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)

\(\int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}\) may not equal \(\lim _{\mathrm{b} \rightarrow \infty} \int_{-\mathrm{b}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) Show that \(\int_{0}^{\infty} \frac{2 \mathrm{xdx}}{\mathrm{x}^{2}+1}\) diverges and hence that \(\int_{-\infty}^{\infty} \frac{2 x d x}{x^{2}+1}\) diverges. Then show that \(\lim _{b \rightarrow \infty} \int_{-b}^{b} \frac{2 x d x}{x^{2}+1}=0\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free