Chapter 2: Problem 33
If \(0<\mathrm{a}<\mathrm{b}\), find \(\lim _{\mathrm{t} \rightarrow 0}\left\\{_{0}^{1}\left[\int_{0}^{1 / \mathrm{b}} \mathrm{x}+\mathrm{a}(1-\mathrm{x})\right]^{\mathrm{t}} \mathrm{dx}\right\\}^{1 / \mathrm{t}}\)
Chapter 2: Problem 33
If \(0<\mathrm{a}<\mathrm{b}\), find \(\lim _{\mathrm{t} \rightarrow 0}\left\\{_{0}^{1}\left[\int_{0}^{1 / \mathrm{b}} \mathrm{x}+\mathrm{a}(1-\mathrm{x})\right]^{\mathrm{t}} \mathrm{dx}\right\\}^{1 / \mathrm{t}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the sum of the series \(\frac{x^{2}}{1.2}-\frac{x^{3}}{2.3}+\frac{x^{4}}{3.4}-\ldots+(-1)^{n+1} \frac{x^{n+1}}{n(n+1)}+\ldots,|x|<1\)
If \(\mathrm{p}, \mathrm{q}\) are positive integers, show that \(\int_{0}^{\pi} \cos p x \sin q x d x\) \(=\left\\{\begin{array}{l}2 q /\left(q^{2}-p^{2}\right), \text { if }(q-p) \text { is odd } \\ 0, & \text { if }(q-p) \text { is even }\end{array}\right.\)
Find the mean value of the velocity of a body falling freely from the altitude \(\mathrm{h}\) with the initial velocity \(\mathrm{v}_{0}\)
Prove that (i) \(0<\int_{0}^{2} \frac{x \mathrm{dx}}{16+x^{3}}<\frac{1}{6}\) (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}^{4}}} \geq \frac{\pi}{4}\) (iv) \(\int_{0}^{1} \frac{d x}{4+x^{3}}>\ln \frac{5}{4}\) (iii) \(\int_{1}^{100} \mathrm{e}^{-\mathrm{x}} \sin ^{2} \mathrm{x} \mathrm{dx}<1\)
4\. Prove that (i) \(\frac{2 \pi}{13}<\int_{0}^{2 \pi} \frac{\mathrm{dx}}{10+3 \cos \mathrm{x}}<\frac{2 \pi}{7}\) (ii) \(0<\int_{0}^{\pi / 4} x \sqrt{\tan x}<\frac{\pi^{2}}{32}\) (iii) \(\frac{1}{2}<\int_{\pi / 4}^{\pi / 2} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}<\frac{1}{\sqrt{2}}\) (iv) \(\left|\int_{1}^{4} \frac{\sin x}{x} d x\right| \leq \frac{3}{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.