Chapter 2: Problem 3
Is the function \(\mathrm{f}(\mathrm{x})=\mathrm{e}^{-1 / \mathrm{x}}\) integrable on the closed intervals (i) \([-3,-2]\), (ii) \([-1,0]\) and (iii) \([-1,1] ?\)
Chapter 2: Problem 3
Is the function \(\mathrm{f}(\mathrm{x})=\mathrm{e}^{-1 / \mathrm{x}}\) integrable on the closed intervals (i) \([-3,-2]\), (ii) \([-1,0]\) and (iii) \([-1,1] ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEstimate \(\int_{0}^{3} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) if \(\mathrm{it}\) is known that \(f(0)=10, f(0.5)=13, f(1)=14, f(1.5)=16, f(2)=18\) \(\mathrm{f}(2.5)=10, \mathrm{f}(3)=6 \mathrm{by}\) (a) the trapezoidal method. (b) Simpson's method.
Solve the following equations: (i) \(\int_{\sqrt{2}}^{x} \frac{d x}{x \sqrt{x^{2}-1}}=\frac{\pi}{12}\) (ii) \(\int_{\ln 2}^{x} \frac{d x}{\sqrt{e^{x}-1}}=\frac{\pi}{6}\) (iii) \(\int_{-1}^{x}\left(8 t^{2}+\frac{28}{3} t+4\right) d t=\frac{1.5 x+1}{\log _{x+1} \sqrt{x+1}}\)
Prove the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
Let \(\mathrm{f}\) be twice continuously differentiable in \([0,2 \pi]\) and concave up. Prove that \(\int_{0}^{2 \pi} f(x) \cos x d x \geq 0\)
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.