Chapter 2: Problem 3
Find the derivative of the function \(\mathrm{y}=\int_{0}^{\mathrm{x}} \frac{1-\mathrm{t}+\mathrm{t}^{2}}{1+\mathrm{t}+\mathrm{t}^{2}} \mathrm{dt}\) at \(\mathrm{x}=1\).
Chapter 2: Problem 3
Find the derivative of the function \(\mathrm{y}=\int_{0}^{\mathrm{x}} \frac{1-\mathrm{t}+\mathrm{t}^{2}}{1+\mathrm{t}+\mathrm{t}^{2}} \mathrm{dt}\) at \(\mathrm{x}=1\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the greatest and least values of the function \(\mathrm{I}(\mathrm{x})=\int_{0}^{\mathrm{x}} \frac{2 \mathrm{t}+1}{\mathrm{t}^{2}-2 \mathrm{t}+2} \mathrm{dt}\) on the interval \([-1,1] .\)
Evaluate \(\int_{0}^{1} \frac{\tan ^{-1} \mathrm{ax}}{\mathrm{x} \sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}\)
If oil leaks from a tank at a rate of \(\mathrm{r}(\mathrm{t})\) litres per minute at time \(t\), what does \(\int_{0}^{120} r(t) d t\) represent?
Prove that if \(|x|<1\) \(\frac{x^{3}}{1.3}-\frac{x^{5}}{3.5}+\frac{x^{7}}{5.7}-\ldots=\frac{1}{2}\left(1+x^{2}\right) \tan ^{-1} x-\frac{1}{2} x\)
\(\sqrt{1}+x\) Prove that, if \(\mathrm{n}>1\) (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{n} x d x\), (ii) \(0<\int_{0}^{\pi / 4} \tan ^{n+1} x d x<\int_{0}^{\pi / 4} \tan ^{n} x d x\). (iii) \(0.5<\int_{0}^{1 / 2} \frac{\mathrm{dx}}{\sqrt{\left(1-\mathrm{x}^{2 \mathrm{a}}\right)}}<0.524\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.