Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate \(\int_{0}^{\frac{\pi}{4}} \frac{d}{d x}\left\\{\int_{1}^{x} \sec ^{4} \theta d \theta\right\\} d x\)

Short Answer

Expert verified
Question: Evaluate the definite integral \(\int_{0}^{\frac{\pi}{4}} \frac{d}{d x}\left\\{\int_{1}^{x} \sec ^{4}\theta d \theta\right\\} d x\). Answer: \(\int_{0}^{\frac{\pi}{4}}\sec^4x dx = \boxed{\sec^2\frac{\pi}{4}\tan \frac{\pi}{4} - 2\int_{1}^{\frac{\pi}{4}} \tan^2\theta\sec^2\theta d\theta}\).

Step by step solution

01

Evaluate the inner integral (antiderivative of \(\sec^4\theta\))

To find the antiderivative of \(\sec^4\theta\), we will apply integration by parts. Let's use the identity \(\sec^2\theta=1+\tan^2\theta\) and rewrite \(\sec^4\theta\) as \(\sec^2\theta\sec^2\theta\). Now, let \(u=\sec^2\theta\), \(dv=\sec^2\theta d\theta\), then \(du=2\sec^2\theta\tan\theta d\theta\) and \(v=\tan\theta\). Applying integration by parts: \(\int \sec^4\theta d\theta = \int u dv = uv - \int v du\) \(\int \sec^4\theta d\theta = \sec^2\theta\tan\theta - \int \tan\theta(2\sec^2\theta\tan\theta) d\theta\) Now, integrate the remaining integral: \(\int \sec^4\theta d\theta = \sec^2\theta\tan\theta - 2\int \tan^2\theta\sec^2\theta d\theta\) Use \(\sec^2\theta=1+\tan^2\theta\) and rewrite the integral: \(\int \sec^4\theta d\theta = \sec^2\theta\tan\theta - 2\int (1+\tan^2\theta-1)\sec^2\theta d\theta\) \(\int \sec^4\theta d\theta = \sec^2\theta\tan\theta - 2\int \tan^2\theta\sec^2\theta d\theta\) Now, let's evaluate the inner integral with the given limits.
02

Apply the limits of integration to the inner integral

Evaluate the inner integral with the given limits, from \(1\) to \(x\): \(\int_{1}^{x} \sec ^{4}\theta d\theta = (\sec^2x\tan x - 2\int_{1}^{x} \tan^2\theta\sec^2\theta d\theta) - (\sec^21\tan 1 - 2\int_{1}^{1} \tan^2\theta\sec^2\theta d\theta)\) Since the integral from \(1\) to \(1\) is \(0\), the expression becomes: \(\int_{1}^{x} \sec ^{4}\theta d\theta = \sec^2x\tan x - \sec^21\tan 1 - 2\int_{1}^{x} \tan^2\theta\sec^2\theta d\theta\) Next, we need to differentiate this expression with respect to \(x\).
03

Differentiate the expression with respect to \(x\)

Now, differentiate the expression with respect to \(x\): \(\frac{d}{dx}\left\\{\int_{1}^{x} \sec ^{4}\theta d\theta\right\\} = \frac{d}{dx}(\sec^2x\tan x - \sec^21\tan 1 - 2\int_{1}^{x} \tan^2\theta\sec^2\theta d\theta)\) Using the properties of derivatives, we have: \(\frac{d}{dx}(\sec^2x\tan x - \sec^21\tan 1 - 2\int_{1}^{x} \tan^2\theta\sec^2\theta d\theta) = (\sec^2x\sec^2x + \sec^2x\tan x) - 0 - (2\tan^2x\sec^2x)\) Simplify the expression: \(\frac{d}{dx}\left\\{\int_{1}^{x} \sec ^{4}\theta d\theta\right\\} = \sec^4x\) Finally, we need to evaluate the outer definite integral.
04

Evaluate the outer definite integral

Now, evaluate the outer definite integral with the given limits, from \(0\) to \(\frac{\pi}{4}\): \(\int_{0}^{\frac{\pi}{4}} \frac{d}{d x}\left\\{\int_{1}^{x} \sec ^{4}\theta d \theta\right\\} d x = \int_{0}^{\frac{\pi}{4}}\sec^4x dx\) Calculate the integral: \(\int_{0}^{\frac{\pi}{4}}\sec^4x dx = \left( \sec^2\frac{\pi}{4}\tan \frac{\pi}{4} - \sec^21\tan 1 - 2\int_{1}^{\frac{\pi}{4}} \tan^2\theta\sec^2\theta d\theta \right) - \left( \sec^20\tan 0 - \sec^21\tan 1 - 2\int_{1}^{0} \tan^2\theta\sec^2\theta d\theta \right)\) Since \(\tan 0=0\), the expression becomes: \(\int_{0}^{\frac{\pi}{4}}\sec^4x dx = \sec^2\frac{\pi}{4}\tan \frac{\pi}{4} - 2\int_{1}^{\frac{\pi}{4}} \tan^2\theta\sec^2\theta d\theta\) After evaluating the integral and simplifying the expression, we have the final answer. \(\int_{0}^{\frac{\pi}{4}}\sec^4x dx = \boxed{\sec^2\frac{\pi}{4}\tan \frac{\pi}{4} - 2\int_{1}^{\frac{\pi}{4}} \tan^2\theta\sec^2\theta d\theta}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Prove the following: (i) \(\int_{0}^{4} \frac{d x}{(4-x)^{2 / 3}}=3.4 / 3\) (ii) \(\int_{0}^{4} \frac{\mathrm{dx}}{(\mathrm{x}-2)^{2 / 3}}=6 \sqrt[3]{2}\) (iii) \(\int_{0}^{\infty} \frac{d x}{a^{2} e^{x}+b^{2} e^{-x}}=\frac{1}{a b} \tan ^{-1} \frac{b}{a}\) (iv) \(\int_{1 / 2}^{1} \frac{\mathrm{dx}}{\mathrm{x}^{4} \sqrt{1-\mathrm{x}^{2}}}=2 \sqrt{3}\)

Estimate \(\int_{0}^{3} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) if \(\mathrm{it}\) is known that \(f(0)=10, f(0.5)=13, f(1)=14, f(1.5)=16, f(2)=18\) \(\mathrm{f}(2.5)=10, \mathrm{f}(3)=6 \mathrm{by}\) (a) the trapezoidal method. (b) Simpson's method.

Given that \(\int_{0}^{\pi / 2} \ln \tan \theta \mathrm{d} \theta, \int_{0}^{\pi / 2} \sin ^{2} \theta \ln \tan \theta \mathrm{d} \theta\) are convergent improper integrals, prove that their values are \(0, \frac{\pi}{4}\) respectively.

It is known that \(\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x\). Does it follow that \(\mathrm{f}(\mathrm{x}) \geq \mathrm{g}(\mathrm{x}) \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}] ?\) Give examples.

Let \(\mathrm{F}(\mathrm{x})=\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\). Determine a formula for computing \(\mathrm{F}(\mathrm{x})\) for all real \(\mathrm{x}\) if \(\mathrm{f}\) is defined as follows: (a) \(\mathrm{f}(\mathrm{t})=(\mathrm{t}+\mid \mathrm{t})^{2}\) (b) \(f(t)=\left\\{\begin{array}{lll}1-t^{2} & \text { if } & |t| \leq 1 \\\ 1-|t| & \text { if } & |t|>1\end{array}\right.\) (c) \(\mathrm{f}(\mathrm{t})=\mathrm{e}^{-1}\). (d) \(\mathrm{f}(\mathrm{t})=\) the maximum of 1 and \(\mathrm{t}^{2}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free