Chapter 2: Problem 3
Evaluate \(\int_{0}^{\frac{\pi}{4}} \frac{d}{d x}\left\\{\int_{1}^{x} \sec ^{4} \theta d \theta\right\\} d x\)
Chapter 2: Problem 3
Evaluate \(\int_{0}^{\frac{\pi}{4}} \frac{d}{d x}\left\\{\int_{1}^{x} \sec ^{4} \theta d \theta\right\\} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the following: (i) \(\int_{0}^{4} \frac{d x}{(4-x)^{2 / 3}}=3.4 / 3\) (ii) \(\int_{0}^{4} \frac{\mathrm{dx}}{(\mathrm{x}-2)^{2 / 3}}=6 \sqrt[3]{2}\) (iii) \(\int_{0}^{\infty} \frac{d x}{a^{2} e^{x}+b^{2} e^{-x}}=\frac{1}{a b} \tan ^{-1} \frac{b}{a}\) (iv) \(\int_{1 / 2}^{1} \frac{\mathrm{dx}}{\mathrm{x}^{4} \sqrt{1-\mathrm{x}^{2}}}=2 \sqrt{3}\)
Estimate \(\int_{0}^{3} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) if \(\mathrm{it}\) is known that \(f(0)=10, f(0.5)=13, f(1)=14, f(1.5)=16, f(2)=18\) \(\mathrm{f}(2.5)=10, \mathrm{f}(3)=6 \mathrm{by}\) (a) the trapezoidal method. (b) Simpson's method.
Given that \(\int_{0}^{\pi / 2} \ln \tan \theta \mathrm{d} \theta, \int_{0}^{\pi / 2} \sin ^{2} \theta \ln \tan \theta \mathrm{d} \theta\) are convergent improper integrals, prove that their values are \(0, \frac{\pi}{4}\) respectively.
It is known that \(\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x\). Does it follow that \(\mathrm{f}(\mathrm{x}) \geq \mathrm{g}(\mathrm{x}) \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}] ?\) Give examples.
Let \(\mathrm{F}(\mathrm{x})=\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\). Determine a formula for computing \(\mathrm{F}(\mathrm{x})\) for all real \(\mathrm{x}\) if \(\mathrm{f}\) is defined as follows: (a) \(\mathrm{f}(\mathrm{t})=(\mathrm{t}+\mid \mathrm{t})^{2}\) (b) \(f(t)=\left\\{\begin{array}{lll}1-t^{2} & \text { if } & |t| \leq 1 \\\ 1-|t| & \text { if } & |t|>1\end{array}\right.\) (c) \(\mathrm{f}(\mathrm{t})=\mathrm{e}^{-1}\). (d) \(\mathrm{f}(\mathrm{t})=\) the maximum of 1 and \(\mathrm{t}^{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.