Chapter 2: Problem 28
Is it true that the average value of an integrable function over an interval of length 2 is half the function's integral over the interval?
Chapter 2: Problem 28
Is it true that the average value of an integrable function over an interval of length 2 is half the function's integral over the interval?
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : (i) \(\int_{0}^{3 \pi / 2} \cos ^{4} 3 x \cdot \sin ^{2} 6 x d x\) (ii) \(\int_{0}^{1} x^{6} \sin ^{-1} x d x\) (iii) \(\int_{0}^{1} x^{3}(1-x)^{9 / 2} d x\) (iv) \(\int_{0}^{1} x^{4}(1-x)^{1 / 4} d x\)
Prove that, as \(n \rightarrow \infty, \int_{0}^{1} \cos n x \tan ^{-1} x d x \rightarrow 0\).
Evaluate the following integrals : (i) \(\int_{0}^{a} x\left(a^{2}-x^{2}\right)^{\frac{7}{2}}\) d (ii) \(\int_{0}^{2} x^{3 / 2} \sqrt{2-x} d x\) (iii) \(\int_{0}^{1} x^{3}\left(1-x^{2}\right)^{5 / 2} d x\) (iv) \(\int_{0}^{2 a} x^{5} \sqrt{\left(2 a x-x^{2}\right)} d x\)
Evaluate \(\int_{0}^{1}\left(\sqrt[3]{1-x^{7}}-\sqrt[7]{1-x^{3}}\right) d x\)
Evaluate the following integrals: (i) \(\int_{-\infty}^{\infty} \frac{x d x}{x^{4}+1}\) (ii) \(\int_{0}^{1} \frac{\ln (1-x)}{x} \mathrm{dx}\) (iii) \(\int_{0}^{\infty} \frac{\mathrm{dx}}{(\mathrm{x}+1)(\mathrm{x}+2)}\) (iv) \(\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}, a, b>0 .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.