Chapter 2: Problem 27
If \(\mathrm{f}(\mathrm{x})\) is a non-negative continuous function such that \(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}+1 / 2)=1\), then find the value of \(\int_{0}^{2} f(x) d x\)
Chapter 2: Problem 27
If \(\mathrm{f}(\mathrm{x})\) is a non-negative continuous function such that \(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}+1 / 2)=1\), then find the value of \(\int_{0}^{2} f(x) d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf oil leaks from a tank at a rate of \(\mathrm{r}(\mathrm{t})\) litres per minute at time \(t\), what does \(\int_{0}^{120} r(t) d t\) represent?
Evaluate the following limits: (i) \(\lim _{n \rightarrow \infty}\left(\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\ldots .+\frac{1}{n}\right)\) (ii) \(\lim _{n \rightarrow \infty} \frac{2^{k}+4^{k}+6^{k}+. .+(2 n)^{k}}{n^{k+1}}, k \neq-1\) (iii) \(\lim _{n \rightarrow \infty} \frac{3}{n}\left[1+\sqrt{\frac{n}{n+3}}+\sqrt{\frac{n}{n+6}}+\sqrt{\frac{n}{n+9}}+\ldots . .\right.\) \(\left.\ldots+\sqrt{\frac{n}{n+3(n-1)}}\right]\) (iv) \(\lim _{n \rightarrow x} \frac{n^{2}}{\left(n^{2}+1\right)^{3 / 2}}+\frac{n^{2}}{\left(n^{2}+2^{2}\right)^{3 / 2}}+\) \(\ldots+\frac{\mathrm{n}^{2}}{\left[\mathrm{n}^{2}+(\mathrm{n}-1)^{2}\right]^{3 / 2}}\)
If \(F(t)=\int_{2}^{3} \sin \left(x+t^{2}\right) d x\), find \(F^{\prime}(t)\).
Show that \(\int_{0}^{\infty} \sin \theta \mathrm{d} \theta\) and \(\int_{0}^{\infty} \cos \theta \mathrm{d} \theta\) are indeterminate.
Let \(\mathrm{f}(\mathrm{x})=\mathrm{A} x^{2}+\mathrm{Bx}+\mathrm{C}\). Show that \(\int_{-\mathrm{h}}^{\mathrm{h}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\frac{\mathrm{h}}{3}[\mathrm{f}(-\mathrm{h})+4 \mathrm{f}(0)+\mathrm{f}(\mathrm{h})]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.