Chapter 2: Problem 26
Find the greatest and least values of the function \(\mathrm{I}(\mathrm{x})=\int_{0}^{\mathrm{x}} \frac{2 \mathrm{t}+1}{\mathrm{t}^{2}-2 \mathrm{t}+2} \mathrm{dt}\) on the interval \([-1,1] .\)
Chapter 2: Problem 26
Find the greatest and least values of the function \(\mathrm{I}(\mathrm{x})=\int_{0}^{\mathrm{x}} \frac{2 \mathrm{t}+1}{\mathrm{t}^{2}-2 \mathrm{t}+2} \mathrm{dt}\) on the interval \([-1,1] .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{a}>0, \mathrm{~b}>0\), and \(\mathrm{f}\) a continuous strictly increasing function with \(\mathrm{f}(0)=0\). Prove that \(a b \leq \int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x\) Prove, moreover, that equality occurs if and on ly if \(\mathrm{b}=\mathrm{f}(\mathrm{a})\).
Evaluate the following integrals : (i) \(\int_{0}^{3 \pi / 2} \cos ^{4} 3 x \cdot \sin ^{2} 6 x d x\) (ii) \(\int_{0}^{1} x^{6} \sin ^{-1} x d x\) (iii) \(\int_{0}^{1} x^{3}(1-x)^{9 / 2} d x\) (iv) \(\int_{0}^{1} x^{4}(1-x)^{1 / 4} d x\)
Suppose that the velocity function of a particle moving along a line is \(v(t)=3 t^{3}+2\). Find the average velocity of the particle over the time interval \(1 \leq \mathrm{t} \leq 4\) by integrating.
Evaluate \(\int_{0}^{\pi / 2} \ln (1+\cos \theta \cos x) \frac{d x}{\cos x}\)
Prove that \(\int_{0}^{1} x^{n} \ln x d x=\frac{1}{(n+1)^{2}}, \quad n>-1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.