Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate \(\int_{0}^{2} f(x) d x\), where \(f(x)=\left\\{\begin{array}{ll}x^{2} & \text { for } 0 \leq x \leq 1 \\ 2-x & \text { for } 1

Short Answer

Expert verified
Answer: The value of the integral of the function f(x) over the closed interval [0, 2] is -1/6.

Step by step solution

01

(i) Finding the antiderivative of f(x) on the whole closed interval [0, 2]

To find the antiderivative of the piecewise function, f(x), we need to derive the antiderivatives of the individual functions in the given interval: 1. For \(0 \leq x \leq 1\): \(F_1(x) = \int x^2 dx = \frac{1}{3}x^3 + C_1\) 2. For \(1 < x \leq 2\): \(F_2(x) = \int (2-x) dx = 2x - \frac{1}{2}x^2 + C_2\) Now, we have to adjust the constants of integration, C1 and C2, to make the antiderivative continuous on the whole interval [0, 2]. Since \(f(x)\) is defined on the interval [0, 1] and f(1) = 1, we can find the value of C1 by plugging x = 1 into \(F_1(x)\): \(F_1(1) = \frac{1}{3} + C_1 = 1 \Rightarrow C_1 = \frac{2}{3}\) Now, let's plug x = 1 into \(F_2(x)\): \(F_2(1) = 2 - \frac{1}{2} + C_2 = F_1(1) \Rightarrow C_2 = -\frac{1}{2}\) So, the antiderivative of f(x) on the whole interval [0, 2] is: $F(x) = \left\\{\begin{array}{ll}\frac{1}{3}x^3 + \frac{2}{3} & \text { for } 0 \leq x \leq 1 \\\ 2x - \frac{1}{2}x^2 -\frac{1}{2} & \text { for } 1<x \leq 2\end{array}\right.$ Now, we can calculate the integral \(\int_{0}^{2} f(x) dx = F(2) - F(0)\): \(= \left(2(2)-\frac{1}{2}(2)^2-\frac{1}{2}\right) - \left(\frac{1}{3}(0)^3 + \frac{2}{3}\right) = 2-\frac{1}{2}=-\frac{1}{2}\) So, the integral of f(x) is equal to -1/2.
02

(ii) Dividing the interval [0, 2] into the intervals [0,1] and [1, 2]

In this approach, we will calculate the integral over each subinterval separately and then add them together: 1. For the interval [0, 1]: \(\int_{0}^{1} x^2 dx = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}(1)^3 - \frac{1}{3}(0)^3 = \frac{1}{3}\) 2. For the interval [1, 2]: \(\int_{1}^{2} (2-x) dx = \left[2x-\frac{1}{2}x^2\right]_1^2 = \left(2(2) -\frac{1}{2}(2)^2\right) - \left(2(1)-\frac{1}{2}(1)^2\right) = - (\frac{1}{2})\) Now we add the integrals: \(\int_{0}^{2} f(x) dx = \int_{0}^{1} x^2 dx + \int_{1}^{2} (2-x) dx = \frac{1}{3} - \frac{1}{2} = -\frac{1}{6}\) So, the integral of f(x) is equal to -1/6. Note: The correct answer is -1/6. There was an error in the first approach. Please disregard the result obtained in the first approach.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Evaluate the following integrals: (i) \(\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}} d x\) (ii) \(\int_{-\infty}^{\infty} \frac{1}{e^{x}+e^{-x}} d x\) (iii) \(\int_{3}^{5} \frac{x^{2} d x}{\sqrt{(x-3)(5-x)}}\) (iv) \(\int_{-1}^{1} \frac{d x}{(2-x) \sqrt{1-x^{2}}}\)

If \(|x|<1\) then find the sum of the series \(\frac{1}{1+x}+\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\frac{8 x^{7}}{1+x^{8}}+\ldots \ldots \infty\)

Prove that (i) \(0<\int_{0}^{2} \frac{x \mathrm{dx}}{16+x^{3}}<\frac{1}{6}\) (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}^{4}}} \geq \frac{\pi}{4}\) (iv) \(\int_{0}^{1} \frac{d x}{4+x^{3}}>\ln \frac{5}{4}\) (iii) \(\int_{1}^{100} \mathrm{e}^{-\mathrm{x}} \sin ^{2} \mathrm{x} \mathrm{dx}<1\)

Prove that \(\int_{a}^{b} \frac{d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\pi\), \(\int_{a}^{b} \frac{x d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\frac{1}{2} \pi(a+b)\) (i) by means of the substitution \(\mathrm{x}=\mathrm{a}+(\mathrm{b}-\mathrm{a}) \mathrm{t}^{2}\), (ii) bymeans of the substitution \((\mathrm{b}-\mathrm{x})(\mathrm{x}-\mathrm{a})=\mathrm{t}\), and (iii) by means of the substitution \(x=a \cos ^{2} t\) \(+b \sin ^{2} t\)

Evaluate the following limits: (i) \(\lim _{n \rightarrow \infty}\left(\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\ldots .+\frac{1}{n}\right)\) (ii) \(\lim _{n \rightarrow \infty} \frac{2^{k}+4^{k}+6^{k}+. .+(2 n)^{k}}{n^{k+1}}, k \neq-1\) (iii) \(\lim _{n \rightarrow \infty} \frac{3}{n}\left[1+\sqrt{\frac{n}{n+3}}+\sqrt{\frac{n}{n+6}}+\sqrt{\frac{n}{n+9}}+\ldots . .\right.\) \(\left.\ldots+\sqrt{\frac{n}{n+3(n-1)}}\right]\) (iv) \(\lim _{n \rightarrow x} \frac{n^{2}}{\left(n^{2}+1\right)^{3 / 2}}+\frac{n^{2}}{\left(n^{2}+2^{2}\right)^{3 / 2}}+\) \(\ldots+\frac{\mathrm{n}^{2}}{\left[\mathrm{n}^{2}+(\mathrm{n}-1)^{2}\right]^{3 / 2}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free