Chapter 2: Problem 25
Let \(\mathrm{f}\) be twice continuously differentiable in \([0,2 \pi]\) and concave up. Prove that \(\int_{0}^{2 \pi} f(x) \cos x d x \geq 0\)
Chapter 2: Problem 25
Let \(\mathrm{f}\) be twice continuously differentiable in \([0,2 \pi]\) and concave up. Prove that \(\int_{0}^{2 \pi} f(x) \cos x d x \geq 0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
Show that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)
Prove that \(\int_{a}^{b} \frac{d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\pi\), \(\int_{a}^{b} \frac{x d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\frac{1}{2} \pi(a+b)\) (i) by means of the substitution \(\mathrm{x}=\mathrm{a}+(\mathrm{b}-\mathrm{a}) \mathrm{t}^{2}\), (ii) bymeans of the substitution \((\mathrm{b}-\mathrm{x})(\mathrm{x}-\mathrm{a})=\mathrm{t}\), and (iii) by means of the substitution \(x=a \cos ^{2} t\) \(+b \sin ^{2} t\)
A function \(\mathrm{f}\), continuous on the positive real axis, has the property that \(\int_{1}^{x y} f(t) d t=y \int_{1}^{x} f(t) d t+x \int_{1}^{y} f(t) d t\) for all \(x>0\) and all \(y>0 .\) If \(f(1)=3\), compute \(\mathrm{f}(\mathrm{x})\) for each \(\mathrm{x}>0\).
Prove that (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{2} x d x, n>1\) (ii) \(1<\int_{0}^{\pi / 2} \sqrt{\sin x} \mathrm{~d} \mathrm{x}<\sqrt{\frac{\pi}{2}}\) (iii) \(\mathrm{e}^{-\frac{1}{4}}<\int_{0}^{1} \mathrm{e}^{\mathrm{x}^{2}-\mathrm{x}} \mathrm{dx}<1\) (iv) \(-\frac{1}{2} \leq \int_{0}^{1} \frac{x^{3} \cos x}{2+x^{2}} d x<\frac{1}{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.