Chapter 2: Problem 24
Can one assert that if a function is absolutely integrable on the interval \([\mathrm{a}, \mathrm{b}]\), then it is integrable on this interval ?
Chapter 2: Problem 24
Can one assert that if a function is absolutely integrable on the interval \([\mathrm{a}, \mathrm{b}]\), then it is integrable on this interval ?
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{p}, \mathrm{q}\) are positive integers, show that \(\int_{0}^{\pi} \cos p x \sin q x d x\) \(=\left\\{\begin{array}{l}2 q /\left(q^{2}-p^{2}\right), \text { if }(q-p) \text { is odd } \\ 0, & \text { if }(q-p) \text { is even }\end{array}\right.\)
Prove the following: (i) \(\int_{0}^{4} \frac{d x}{(4-x)^{2 / 3}}=3.4 / 3\) (ii) \(\int_{0}^{4} \frac{\mathrm{dx}}{(\mathrm{x}-2)^{2 / 3}}=6 \sqrt[3]{2}\) (iii) \(\int_{0}^{\infty} \frac{d x}{a^{2} e^{x}+b^{2} e^{-x}}=\frac{1}{a b} \tan ^{-1} \frac{b}{a}\) (iv) \(\int_{1 / 2}^{1} \frac{\mathrm{dx}}{\mathrm{x}^{4} \sqrt{1-\mathrm{x}^{2}}}=2 \sqrt{3}\)
Show that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)
Starting from \(\frac{1}{1+x}-1+x-x^{2}+\ldots+x^{2 n-1}=\frac{x^{2 n}}{1+x}\) show that \(t-\frac{t^{2}}{2}+\frac{t^{2}}{3}-\ldots-\frac{t^{2 n}}{2 n} \leq \ln (1+t) \leq t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-+\frac{t^{2 n+1}}{2 n+1}\) for \(\mathrm{t} \geq 0\).
Let \(\mathrm{a}>0, \mathrm{~b}>0\), and \(\mathrm{f}\) a continuous strictly increasing function with \(\mathrm{f}(0)=0\). Prove that \(a b \leq \int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x\) Prove, moreover, that equality occurs if and on ly if \(\mathrm{b}=\mathrm{f}(\mathrm{a})\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.