Chapter 2: Problem 23
If \(\mathrm{f}\) is a continuous function such that \(\int_{0}^{x} f(t) d t=x e^{2 x}+\int_{0}^{x} e^{-t} f(t) d t\) for all \(\mathrm{x}\), find an explicit formula for \(\mathrm{f}(\mathrm{x})\).
Chapter 2: Problem 23
If \(\mathrm{f}\) is a continuous function such that \(\int_{0}^{x} f(t) d t=x e^{2 x}+\int_{0}^{x} e^{-t} f(t) d t\) for all \(\mathrm{x}\), find an explicit formula for \(\mathrm{f}(\mathrm{x})\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate \(\int_{0}^{\frac{1}{2} x} \frac{\cos ^{2} \theta d \theta}{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}=\frac{\pi}{2 a(a+b)}\) \(a, b>0 .\)
Evaluate \(\int_{0}^{\pi / 2} \ln (1+\cos \theta \cos x) \frac{d x}{\cos x}\)
Prove that if \(|x|<1\) \(\frac{x^{3}}{1.3}-\frac{x^{5}}{3.5}+\frac{x^{7}}{5.7}-\ldots=\frac{1}{2}\left(1+x^{2}\right) \tan ^{-1} x-\frac{1}{2} x\)
Show that \(\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{dx}=\int_{0}^{1} \sqrt{-\ell \text { ny }}\) dy by interpreting th -
Which of following integrals are improper ? Why? (a) \(\int_{1}^{2} \frac{1}{2 x-1} \mathrm{dx}\) (b) \(\int_{0}^{1} \frac{1}{2 x-1} d x\) (c) \(\int_{-\infty}^{\infty} \frac{\sin x}{1+x^{2}} d x\) (d) \(\int_{1}^{2} \ln (x-1) d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.