Chapter 2: Problem 23
Find the greatest and the least value of the function \(F(x)=\int_{1}^{x}|t|\) dt on the interval \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
Chapter 2: Problem 23
Find the greatest and the least value of the function \(F(x)=\int_{1}^{x}|t|\) dt on the interval \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that if \(|x|<1\) \(\frac{x^{3}}{1.3}-\frac{x^{5}}{3.5}+\frac{x^{7}}{5.7}-\ldots=\frac{1}{2}\left(1+x^{2}\right) \tan ^{-1} x-\frac{1}{2} x\)
Show that for each integer \(\mathrm{m}>1\), \(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}<\ln m<1+\frac{1}{2}+\ldots+\frac{1}{m-1}\)
Prove that (i) \(\int_{1}^{2} \frac{d x}{x^{3}+3 x+1}<\frac{1}{5}\) (ii) \(3 \sqrt{23}<\int_{2}^{5} \sqrt{3 \mathrm{x}^{3}-1} \mathrm{dx}<10 \sqrt{15}-8 \sqrt{6} / 5\) (iii) \(2<\int_{0}^{4} \frac{d x}{1+\sin ^{2} x}<4\) (iv) \(\frac{\pi}{2}<\int_{0}^{\pi / 2} \frac{\mathrm{d} \theta}{\sqrt{1-\mathrm{k}^{2} \sin ^{2} \theta}}<\frac{\pi}{2 \sqrt{1-\mathrm{k}^{2}}}\left(0<\mathrm{k}^{2}<1\right)\).
\(\sqrt{1}+x\) Prove that, if \(\mathrm{n}>1\) (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{n} x d x\), (ii) \(0<\int_{0}^{\pi / 4} \tan ^{n+1} x d x<\int_{0}^{\pi / 4} \tan ^{n} x d x\). (iii) \(0.5<\int_{0}^{1 / 2} \frac{\mathrm{dx}}{\sqrt{\left(1-\mathrm{x}^{2 \mathrm{a}}\right)}}<0.524\).
Prove that \(\lim _{\lambda \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+\lambda x^{4}} d x=0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.