Chapter 2: Problem 22
Find the critical points of the function \(f(x)=x-\ell n x+\int_{2}^{x}\left(\frac{1}{z}-2-2 \cos 4 z\right) d z\)
Chapter 2: Problem 22
Find the critical points of the function \(f(x)=x-\ell n x+\int_{2}^{x}\left(\frac{1}{z}-2-2 \cos 4 z\right) d z\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that (i) \(\int_{1}^{2} \frac{d x}{(x+1) \sqrt{x^{2}-1}}=\frac{1}{\sqrt{3}}\). (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{(1+x)(2+x) \sqrt{x(1-x)}}=\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{6}}\right)\).
Using Schwartz-Bunyakovsky inequality with \(\mathrm{f}^{2}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}}, \mathrm{~g}^{2}(\mathrm{x})=1+\mathrm{x}^{2}\), show that \(\int_{0}^{1} \frac{1}{1+x^{2}} d x>\frac{3}{4}\).
(a) Show that \(\int_{-1}^{1} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{f}\left(\frac{-1}{\sqrt{3}}\right)+\mathrm{f}\left(\frac{1}{\sqrt{3}}\right)\) for \(f(x)=1, x, x^{2}\) and \(x^{3}\) (b) Let a and b be two numbers, \(-1 \leq \mathrm{a}<\mathrm{b} \leq 1\) such that \(\int_{-1}^{1} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{b})\) for \(\mathrm{f}(\mathrm{x})=1\), \(x, x^{2}\), and \(x^{3} .\) Show that \(a=-1 / \sqrt{3}\) and \(b=1 / \sqrt{3}\). (c) Show that the approximation \(\int_{-1}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx} \approx \mathrm{f}(-1 / \sqrt{3})+\mathrm{f}(1 / \sqrt{3})\) has no error when \(\mathrm{f}\) is a polynomial of degree atmost 3 .
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
Find \(\int_{0}^{2} f(x) d x\), where
\(f(x)=\left\\{\begin{array}{c}\frac{1}{\sqrt[4]{x^{3}}} \quad \text { for } 0
\leq x \leq 1 \\ \frac{1}{\sqrt[4]{(x-1)^{3}}}\end{array}\right.\) for \(1
What do you think about this solution?
We value your feedback to improve our textbook solutions.