Chapter 2: Problem 21
Evaluate \(\int_{1}^{1 / 2} \frac{x^{2}+1}{x^{4}-x^{2}+1} \ln \left(1+x-\frac{1}{x}\right) d x\)
Chapter 2: Problem 21
Evaluate \(\int_{1}^{1 / 2} \frac{x^{2}+1}{x^{4}-x^{2}+1} \ln \left(1+x-\frac{1}{x}\right) d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}\) be twice continuously differentiable in \([0,2 \pi]\) and concave up. Prove that \(\int_{0}^{2 \pi} f(x) \cos x d x \geq 0\)
Estimate \(\int_{0}^{3} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) if \(\mathrm{it}\) is known that \(f(0)=10, f(0.5)=13, f(1)=14, f(1.5)=16, f(2)=18\) \(\mathrm{f}(2.5)=10, \mathrm{f}(3)=6 \mathrm{by}\) (a) the trapezoidal method. (b) Simpson's method.
Prove that \(\int_{0}^{2 \lambda} \frac{\sin x}{x} d x=\int_{0}^{i} \frac{\sin 2 y}{y} d y=\frac{\sin ^{2} \lambda}{\lambda}+\int_{0}^{i} \frac{\sin ^{2} x}{x^{2}} d x .\) Deduce that \(\int_{0}^{\infty} \frac{\sin x}{x} d x=\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x\) (It may be assumed that the integrals are convergent)
If \(g(x)\) is the inverse of \(f(x)\) and \(f(x)\) has domain \(x \in[1,5]\), where \(f(1)=2\) and \(f(5)=10\) then find the value of \(\int_{1}^{5} f(x) d x+\int_{2}^{10} g(y) d y\).
Show that for each integer \(\mathrm{m}>1\), \(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}<\ln m<1+\frac{1}{2}+\ldots+\frac{1}{m-1}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.