Chapter 2: Problem 20
Show that \(\int_{0}^{x}|t| d t=\frac{1}{2} x|x|\) for all real \(x\) and express \(\mathrm{F}(\mathrm{x})=\int_{-1}^{\mathrm{x}}|\mathrm{t}| \mathrm{dt}\) in a piecewise form that does not involve an integral.
Chapter 2: Problem 20
Show that \(\int_{0}^{x}|t| d t=\frac{1}{2} x|x|\) for all real \(x\) and express \(\mathrm{F}(\mathrm{x})=\int_{-1}^{\mathrm{x}}|\mathrm{t}| \mathrm{dt}\) in a piecewise form that does not involve an integral.
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)
Show that \(\int_{0}^{\infty} \sin \theta \mathrm{d} \theta\) and \(\int_{0}^{\infty} \cos \theta \mathrm{d} \theta\) are indeterminate.
Show that \(0.78<\int_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}<0.93\)
Evaluate the following integrals: (i) \(\int_{-\infty}^{\infty} \frac{x d x}{x^{4}+1}\) (ii) \(\int_{0}^{1} \frac{\ln (1-x)}{x} \mathrm{dx}\) (iii) \(\int_{0}^{\infty} \frac{\mathrm{dx}}{(\mathrm{x}+1)(\mathrm{x}+2)}\) (iv) \(\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}, a, b>0 .\)
It can be proved that \(\int_{0}^{\infty} \frac{x^{n-1}}{1+x} d x=\pi \operatorname{cosec} n \pi\) for \(0<\mathrm{n}<1\). Verify that this equation is correct for \(\mathrm{n}=1 / 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.