Chapter 2: Problem 20
Prove that, as \(n \rightarrow \infty, \int_{0}^{1} \cos n x \tan ^{-1} x d x \rightarrow 0\).
Chapter 2: Problem 20
Prove that, as \(n \rightarrow \infty, \int_{0}^{1} \cos n x \tan ^{-1} x d x \rightarrow 0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate \(\int_{0}^{a} \sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}} \cos ^{-1} \frac{\mathrm{x}}{\mathrm{a}} \mathrm{dx}\).
(a) Make a conjecture about the value of the limit \(\lim _{k \rightarrow 0} \int_{1}^{b} t^{k-1} d t(b>0)\) (b) Check your conjecture by evaluating the integral and finding the limit. [Hint: Interpret the limit as the definition of the derivative of an exponential function]
Evaluate \(\int_{0}^{1} \frac{\tan ^{-1} \mathrm{ax}}{\mathrm{x} \sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}\)
Prove that \(\lim _{\omega \rightarrow \infty} \frac{e^{k m^{2} x^{2}}}{\int_{a}^{b} e^{k m^{2} x^{2}} d x}= \begin{cases}0 & \text { if } x0, \mathrm{k}>0, \mathrm{~b}>\mathrm{a}>0)\)
Prove that \(\int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{x} \sin ^{\mathrm{m}} \mathrm{xd} \mathrm{x}=2^{-\mathrm{m}} \int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{xdx} .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.